
The University of New South Wales

School of Computer Science and Engineering

Binding Haskell to
Object-Oriented

Component Systems via
Reflection

André T. H. Pang

B. Sc (Computer Science & Psychology) Honours Thesis

June 2003

Supervisor: Dr. Manuel Chakravarty
Assessor: Dr. Kai Engelhardt

Abstract

A universal framework is described to interface Haskell to a component sys-
tem or object-oriented programming language with reflection capabilities. Tech-
niques are shown which enable modelling an object-oriented class hierarchy, in-
cluding multiple inheritance and class objects, in Haskell. Template Haskell is
used as a basis to write an interface generator, which uses the reflective capa-
bilities of the targeted component system to automatically derive and create a
Haskell interface for the components’ APIs.

A low-level communications library is designed which enables sending mes-
sages to components, and a high-level messaging API is layered on top of the
library to present a convenient, elegant interface for a Haskell programmer to
interact with components. Techniques are given to enable exception marshalling
between the component system and Haskell, to perform memory management of
foreign components in the Haskell system, and to write a component in Haskell.
A Haskell to Objective-C binding named MochΛ has been written, to show that
these ideas are practical and can be implemented.

Acknowledgements

The problem with acknowledgements is that

∃a⇒ person(a) ∧ unacknowledged(a)

Nevertheless, I am indebted to far too many people to not express not my
gratitude at all. This thesis was more than a one-man show.

Immense thanks must go to my comrades in the Programming Languages
and Systems research group at UNSW, especially Sean Seefried, Gabi Keller and
Don Stewart, who always found the time to help me with obscure questions, on
topics ranging from computer science to the meaning of life. (Try as they might,
I still believe they’re two different things.)

Thanks to all the helpful people in the Haskell community, who produce the
wonderful compilers and tools that we use, and all the knowledgeable, friendly
folk on the mailing lists and #haskell for answering questions which I had.

To Jeffrey Lim, whose friendship and heart is only rivalled by his incredible
programming abilities. Any good knowledge I have about program design, I
learnt from you. Thanks.

To my supervisor, Manuel Chakravarty, who introduced me to the wonderful
world of functional programming, and guided me through the maze of computer
science and University in a way that nobody else could have done—all while be-
ing a fantastic friend. I hope this thesis makes you proud.

To my family, who always support me and understand me no matter how
much sleep I’ve not had. Thank you for always being there.

To Michelle, for just being who you are.

Contents

1 Introduction & Background 1
1.1 Haskell . 1
1.2 Object-Oriented Programming 1
1.3 Component Systems . 2
1.4 Motivation and Overview . 3
1.5 Overloaded Terminology . 4

1.5.1 Classes and Types . 4
1.5.2 Type Classes and Overloading 4
1.5.3 Parameterised Types vs. Templates 5

2 Haskell vs. Component Systems 6
2.1 Integrating Haskell and Component Systems 6
2.2 Modelling an Object-Oriented Class Hierarchy 7
2.3 Communication with Components 7
2.4 Exception Marshalling . 8
2.5 Memory Management . 8
2.6 Summary of problems . 8

3 Modelling a Class Hierarchy in Haskell 10
3.0.1 Phantom types . 10
3.0.2 Representing multiple inheritance via type classes 11
3.0.3 Moving on from phantom types 13

3.1 Automatic class hierarchy generation 14
3.1.1 Meta-programming the interface generator 15
3.1.2 Autogeneration of Interface Definitions 17
3.1.3 Reflecting on Interface Definitions 17

3.2 Upcasting and Downcasting Objects in the Class Hierarchy . . . 18
3.2.1 Upcasting and downcasting with fromx and tox 19
3.2.2 Convenient casting: upcast and downcast 19
3.2.3 Statically type-checking casting 22
3.2.4 Dynamically type-checking casting 22

3.3 Class Objects . 22
3.4 Representing Components and Objects in Haskell 25

4 Component Communication 28
4.1 Sending Messages: the Low-Level Interface 28

4.1.1 The Foreign Function Interface 28
4.1.2 The FFI: Extend or Embrace? 28

CONTENTS iv

4.1.3 C as the Proxy Language 30
4.1.4 Messages, Receivers & Message Expressions 30
4.1.5 The mailman arrives . 32

4.2 Creating a friendlier mailperson 33
4.2.1 Setting the Message Arguments 34
4.2.2 Sending Variable Arguments in a Message 34
4.2.3 Overloading the message reply type 40
4.2.4 Implementing and using sendMessage 40

4.3 Direct Messaging: Statically type-checked message sending . . . 42
4.4 Implementing Direct Messaging 43
4.5 Transparent marshalling . 49
4.6 Monadic binding and object-oriented syntax 49
4.7 Receiving messages . 50

5 Exception Marshalling 54

6 Memory Management 56

7 MochΛ: Haskell & Cocoa 59
7.1 MochΛ . 59

7.1.1 The Cocoa classes . 59
7.1.2 Communication with Objective-C 60
7.1.3 Building Cocoa applications 60

8 Discussion & Conclusion 61
8.1 Summary of ideas . 61
8.2 Conclusion . 61
8.3 Future Work . 62

A An explanation of getClassObject 63

Chapter 1

Introduction & Background

1.1 Haskell

Haskell is a purely functional programming language. It has many features
which make it desirable to use, such as strong, static typing with a type inference
engine, parameterised data types, ad-hoc and parametric polymorphism, lazy
evaluation, higher-order functions, and built-in memory management. Haskell
offers full-fledged IO via monads, and a standardised Foreign Function Interface
[12] (FFI) to interact with the operating system and other languages.

1.2 Object-Oriented Programming

The object-oriented programming paradigm is based around the idea of an ob-
ject. An object is a collection of data and functions which operate on that data,
merged into a single entity. The object’s internal data (known as instance vari-
ables or fields) can typically only be manipulated through the functions which
the object exposes (called methods). This ensures that details of an object’s
implementation are hidden behind the interface offered by the object’s meth-
ods. Thus, objects provide a means of data encapsulation. Calling a method of
an object is usually known as invoking a method, or sending a message to the
object (where the method to invoke is part of the message’s payload).

Objects are categorised into various classes. A class is a specification for
what fields and methods an object should contain. Using classes, object-oriented
systems offer a feature known as inheritance: classes can inherit or subclass
other classes. All the fields and methods of the inherited class (also called the
superclass) become part of the specification of the subclass. Objects which are
instantiated from a subclass are treated as belonging to the same category as an
object instantiated from the superclass; i.e. from the compiler’s point of view, a
subclass can masquerade as the same type of the superclass (but not vice versa).
Type inheritance is more formally known as subtyping.

Examples of object-oriented programming languages include C++, Java,
Smalltalk, and Objective-C.

1.3 Component Systems 2

1.3 Component Systems

Component systems have been evangelised as a way of building systems through
self-contained entities known as components. Components, like objects, are
required to hide their implementation from their interface, and also offer a
standard protocol for performing a component’s actions and communicating
between components.

Components therefore share much similarity with object-oriented program-
ming. Both systems are based around the idea of self-contained entities with
data encapsulation, and both systems offer methods that can be invoked by
other objects and components, with a standard way of invoking those services.
Examples of component systems include CORBA, (D)COM and Enterprise Jav-
abeans (J2EE).

While components and objects are similar, they usually differ in two signif-
icant respects:

• Component systems are required to offer ways to locate and communi-
cate with other components in the system. For example, in CORBA, a
component known as an Object Request Broker (ORB) can locate a com-
ponent which performs the services that another component requires, and
establish communication channels between those two services.

• Objects are typically much more fine-grained than components. The range
of services or functionality that an object offers is usually smaller than a
component.

Even with these differences, it is common to see object-oriented programming
languages being used as a basis to write components because it is easy to create
an object which functions as a component. This is usually achieved by using
a software adapter, which transforms the component system’s method calling
convention into one which the object can understand.

Indeed, sometimes the line between object and component systems are even
more blurred than outlined above. A component system can be built from a
programming language feature commonly known as reflection or introspection.
Reflection enables programs, at run-time, to query detailed information about
objects, such as what class and superclass an object belongs to and what meth-
ods an object offers. Reflection also usually allows a running program to create
instances of or invoke methods on objects, even if the appropriate class, object
and method names are not known until runtime. Reflection can therefore serve
as a foundation for building a facility to locate other objects in the system, so
that a programming language itself can, with little effort, be extended to be-
come a complete component system. Enterprise Javabeans is an example of a
component system which is implemented in this manner.

For the purposes of this thesis, object-oriented languages which have reflec-
tive capabilities will be treated in the same manner as component systems. Both
systems are similar enough that they present the same challenges in integrating
them with Haskell.

1.4 Motivation and Overview 3

1.4 Motivation and Overview

Haskell has nowhere near the popularity of object-oriented programming lan-
guages and component systems. Indeed, object-oriented languages and compo-
nents serve as the foundation for many modern systems, and many frameworks,
libraries and platforms use object-oriented class hierarchies to structure them-
selves. There are a number of benefits to both the Haskell and object-oriented
worlds if a binding could be created which enables Haskell to communicate with
and act as an object or component:

• Many important APIs are object-oriented. For example, the Objective-C
Cocoa framework, the Microsoft Foundation Classes, and the GTK+/QT
toolkits are standard APIs which are used to develop GUI applications
on the Mac OS X, Windows and UNIX platforms. All these APIs are
object-oriented, so a way for Haskell to use these frameworks in a con-
venient, elegant manner would enable Haskell to build sophisticated GUI
applications.

• Component systems such as CORBA, (D)COM/OLE, Enterprise Jav-
abeans, Bonobo and KParts are evolving into dé facto ways to provide
extra functionality to their respective environments. Each component
system usually provides multiple language bindings, but a Haskell binding
to such systems is rare because of the difficulties faced in bridging Haskell
to the component systems.

• Enabling Haskell to communicate with component systems opens Haskell
to a far greater audience. Authors of components and applications may
turn to Haskell to build their systems if they understand that Haskell can
easily interplay with component and object-oriented systems.

This thesis tackles the challenging problem of interfacing Haskell with object-
oriented and component systems. There are many problems to be solved: how
can Haskell model an object-oriented class hierarchy, which includes modelling
features such as class inheritance, and multiple inheritance? Can such a model
be designed while taking full advantage of Haskell’s strong, static typing when-
ever possible? How can Haskell invoke methods on objects, and send messages
to components, again while retaining strong, static typing where appropriate?
How can a convenient messaging API be written, so that Haskell programmers
who wish to interact with components can do so, in a manner as convenient
as one of the component system’s natively supported programming languages?
How can exceptions be marshalled from the component system to the Haskell
environment, and how can Haskell’s memory management be extended to sup-
port management on foreign components?

This challenges are all defined and tackled in this thesis, and not only have
solutions been found to many of the problems, but a Haskell to Objective-C
language binding has been written to prove that these ideas are practical and
work. This language binding, MochΛ, allows Haskell to interact with the pow-
erful Cocoa framework written in Objective-C. Cocoa is the primary framework
used to develop applications on Mac OS X, and MochΛ shows that binding
Haskell to such a framework has great benefits. By using MochΛ, Haskell can
be used to build full-blown graphical applications on Mac OS X, and Haskell

1.5 Overloaded Terminology 4

can also be used to create objects which interact with the rest of Cocoa and the
operating system.

1.5 Overloaded Terminology

The functional programming and object-oriented programming disciplines are
both rich with their own terminology. Some words have conflicting meanings in
the two domains: in particular, the definitions of class, template and overloading
should be clarified.

1.5.1 Classes and Types

A class in object-oriented terminology is a specification of what methods and
instance variables that a concrete instantiation of that class—an object—should
have. Classes can be thought of as types, and class names are usually used as
types in object-oriented languages to permit the compiler to type-check expres-
sions. Indeed, the analogy to a class in the Haskell world is the Haskell data
type (or simply type), with the notable exception that Haskell does not permit
subtyping.

Classes in Haskell are different entities from classes in object-oriented pro-
gramming; Haskell’s classes, more formally known as type classes, serve as a
form of overloading (also known as ad-hoc polymorphism).

1.5.2 Type Classes and Overloading

Type classes allow for a function to have different implementations, depending
on the type(s) of the arguments passed to the function. For example, the Haskell
function show can be used to display any data type as a string, as long as the data
type to be displayed is an instance of (belongs to) the Show type class, which
requires that the data type has implemented an appropriate show function.

It is important to note that the type signature for the functions in the type
class remains the same no matter how many implementations it has. This
is achieved by using constrained type variables in the type signature for the
overloaded function. The constrained type variables represent arguments of any
type which are instances of the type class. For example, the type signature for
the Haskell > (greater than) function is Ord a ⇒ a → a → Bool, which signifies
that > takes in two arguments of type a which must belong to the type class
Ord, and outputs a value of type Bool. A compile-time error will be raised by
the type checker if the constraints on the type variables are not met.

Type classes can also be subclassed, so that any data type which belongs to
the subclass also belongs to the superclass. For example, the Ord type class
specifies types which have the property of being ordered, so that one can use
the comparison functions < and > on those types to see which of the arguments
is greater or lesser. However, for a type to be ordered, it must also be possible
to define whether two values are equal: thus, the Ord type class can subclass the
Eq type class, so that any instances of Ord are also required to be instances of
Eq.

Haskell’s type classes are most analogous to operator overloading in C++,
although Haskell’s overloading is not restricted to the standard mathematical

1.5 Overloaded Terminology 5

operators. Type classes allow a programmer to define new functions (such as
show) which can be overloaded, and specify which implementation of those func-
tions should be chosen for particular types.

Note that this definition of overloading in Haskell is very different to the
typical definition of overloading in the object-oriented world, which often refers
to method overloading. Method overloading enables a method to have multi-
ple type signatures, and which method is called is dependent on which type
signature matches the function call.

1.5.3 Parameterised Types vs. Templates

Haskell also supports the notion of parameterised types: these are type defini-
tions which contain a type variable. When the type is instantiated, the type
variable is filled in with a concrete Haskell type, such as an Int or a String. For
example, a pointer in Haskell has the type Ptr a; when an actual pointer is
created, the type variable a must be instantiated with a concrete type, so that
a pointer to an Int will have the type Ptr Int, and a pointer to a Float will have
the type Ptr Float.

The object-oriented programming language C++ also supports parame-
terised types through a mechanism called templates. As well as parameterised
types, C++ templates are used as a form of compile-time meta-programming.
At the time of compilation, the template generates code as its output which
becomes part of the final program.

The Glasgow Haskell Compiler (GHC) also offers meta-programming fa-
cilities via Template Haskell. What is important to note here is that C++
templates, while offering meta-programming, are focused on providing parame-
terised types to the language. Template Haskell, on the other hand, is focused
purely on meta-programming. Parameterised types and meta-programming are
two distinctly different features in Haskell, whereas they are tightly coupled in
C++.

Chapter 2

Haskell vs. Component
Systems

2.1 Integrating Haskell and Component Systems

The challenge is to allow Haskell to communicate with component systems:
Haskell programs must be able to locate and identify components, and send and
receive messages to and from those components, just as any other component
would be able to do. This must be done while still maintaining an elegant
interface on the Haskell side, so that its important features such as strong type
checking and its purely functional nature can still be used while interacting with
components. The interface must also be convenient to use, so that using it in
Haskell is at least as simple as using one of the component system’s primary
supported languages.

Ideally, Haskell should act as a first-class citizen in the component system,
so that it is possible to write components or objects in Haskell and interface
those Haskell-written components with the rest of the system. Again, this must
be done by using a convenient, elegant Haskell interface to write the component.

Given these defined goals of elegance and convenience, it is possible to divide
the challenge of integrating Haskell with component systems into two parts:

• allowing Haskell to communicate with other components or objects, and

• presenting an elegant, convenient interface on the Haskell side, so that the
component system’s concepts such as class inheritance can be understood
and modelled on the Haskell side—with full support from the type system
where appropriate.

At first glance, it may seem that cleanly separating the problem into these
two parts is a wise idea: it should be possible to tackle each sub-problem indi-
vidually. However, it may be difficult to layer a higher-level, more convenient
API on top of a more primitive communications API if the right foundations
are not present in the primitive API.

For example, it is tempting to use a single type to in Haskell to represent any
object or component. This may enable a simpler design for the communications
library. However, this design decision may cause problems when attempting to

2.2 Modelling an Object-Oriented Class Hierarchy 7

model the object-oriented class hierarchy in Haskell. In particular, it will not
be possible for the type system to distinguish between different types of objects
if a single type is used to represent all objects.

2.2 Modelling an Object-Oriented Class Hierar-
chy

Many component systems borrow concepts from object-oriented systems, such
as using object-oriented classes to represent components of different types. Some
component systems even support the use of class inheritance, so that a com-
ponent’s interface or implementation can be based upon another component’s.
If a component system’s class hierarchy can be modelled via Haskell types in
an isomorphic manner, this would allow Haskell to perform static, strong type
checking on code which involves components.

Unfortunately, numerous problems arise from the mismatch between Haskell’s
type system and the type systems typically found in object-oriented languages:

• Haskell lacks a defining feature of object-oriented systems: it does not
have subtyping (inheritance).

• A subclass may inherit from multiple superclasses. It may only be allowed
to inherit the interface of those superclasses (e.g. Java, C#, Objective-
C), or it may inherit both the interface and implementations from its
superclasses (e.g. C++).

• In some object-oriented systems (e.g. Java, Smalltalk, Objective-C), defin-
ing a class has a dual purpose: it creates a new type with the same name
of that class, and it also creates an instantiated object known as a class
object. This instantiated object is typically used as a factory object : to
create an instance object which belongs to a particular class, you invoke a
method of that class’s factory object (e.g. often named alloc or new) which
creates the instance for you.

The aim is to model these features of an object-oriented class hierarchy
in Haskell, and do so in a manner which requires minimum extension to the
language. The type checker must still be able to infer the types of objects
and accurately type check code which uses objects—including any functions
responsible for communicating with the component system.

There is also the non-trivial problem of performing the actual modelling. It
is unacceptable for a programmer to tediously write the declarations required to
encode a class hierarchy: the Java API’s prototype declarations span hundreds
of pages. Automating the transformation of the class hierarchy into Haskell
must be possible.

2.3 Communication with Components

For Haskell to communicate with components, it must be able to send messages
to and receive messages from a component. There are several problems involved
with communication:

2.4 Exception Marshalling 8

• How is it possible to build a message in Haskell which can then be sent to
other components?

• How do we ensure that the information in each message follows the com-
ponent’s messaging protocol; e.g. that each item in the message has the
proper type and alignment required by the receiving component?

• How can Haskell perform the actual operation of sending and receiving
messages to and from a component?

• If sending a message to a component results in the component replying to
us with a return value, how can the replied data, and its type, be obtained?

• Is it possible for the communications interface to marshal values between
the Haskell environment and the component system, so that native Haskell
data types can be understood by the component system and vice versa?

• How can Haskell receive messages from the component system, i.e. how
can a component be written in Haskell?

2.4 Exception Marshalling

Exceptions are pre-defined events in program which indicate exceptional condi-
tions, such as a division by zero error. They can potentially change the flow of
control in a program. When Haskell is interacting with a component system,
an exception may be thrown (or raised) in the component system, which should
then be caught and marshalled to the Haskell environment, so that Haskell code
can take an appropriate action to handle the exceptional condition. How can
exceptions be marshalled to the Haskell environment, and how can a communi-
cations framework be designed to correctly catch and marshal exceptions?

2.5 Memory Management

Haskell features automatic memory management by using a garbage collector, so
that a Haskell programmer never has to worry about allocating and deallocating
memory for expressions. If Haskell is to interact with a component system, the
automatic memory management that a programmer is used to in the Haskell
environment should also be able to manage any foreign components. How can
Haskell’s memory management system be extended to support foreign compo-
nents? It is always possible or necessary to perform such memory management
when interfacing with component systems?

2.6 Summary of problems

There are a number of challenges involved in interfacing Haskell to a component
system. It may be simple to enable Haskell to communicate with a component
system, but presenting a convenient, elegant Haskell API for such communica-
tion is far harder. The main problem areas include:

2.6 Summary of problems 9

• Modelling an object-oriented class hierarchy in Haskell while retaining
strong, static typing where appropriate. This may include modelling sub-
typing, multiple inheritance and class objects, and also involves generating
the a Haskell API to use any desired components.

• Communicating with components by building and sending messages and
retrieving message replies—with full type checking and type inference.
Writing components in Haskell and enabling those components to receive
messages from the component system should also be possible.

• Exception marshalling : if sending a message to the component system
results in an exception being thrown, it should be possible for the Haskell
environment to catch those exceptions and take appropriate action.

• Automatic memory management of any components which the Haskell
environment interacts with.

Chapter 3

Modelling a Class
Hierarchy in Haskell

For Haskell to communicate with component systems, it would be ideal if there
was a way to model the component system’s class hierarchy and types in Haskell.
Without Haskell knowing about the component system’s class hierarchy, two of
Haskell’s most defining features—strong typing and type inference—would not
be used to their full potential on Haskell code which uses with components.

Encoding a class hierarchy in Haskell is a non-trivial problem due to the
mismatch between its type system and the type systems typically used by com-
ponent systems and object-oriented languages. Nevertheless, there are several
techniques that can be used which enable Haskell’s type system to accurately
model the typing used by object-oriented languages while still allowing strong
typing and type inference.

3.0.1 Phantom types

One method of modelling an object-oriented class hierarchy with inheritance
is using phantom types: a phantom type is a parameterised type where the
parameter does not occur in the type constructor definition; in data Foo a =
Foo, for example, a is a phantom type. The phantom type can be used by the
type system to guarantee that any instances of that type are well-formed. In this
case, the type’s parameter can be used to model subtyping, to a limited extent,
in the type system. For example, Listing 3.1 shows a Java class declaration
for two classes Super and Sub; a Haskell encoding of the class hierarchy using
phantom types is shown in Listing 3.2.

Listing 3.1: A superclass and subclass in Java

class Super { . . . }
class Sub extends Super { . . . }

The type Super () can then be used whenever an instance of the Super
object-oriented class is required, but none of its subclasses would be accepted if
this type is used. To accept any instance of the Super class, including any of its

11

Listing 3.2: A superclass and subclass in Haskell, modelled with phantom types

data SuperT a = SuperT
type Super a = SuperT a

data SubT a = SubT
type Sub a = Super (SubT a)

subclasses, the type Super a is used. This technique has been used in a number of
previous approaches to bind Haskell to component systems [1–3]. Its main draw-
card is that it was one of the first ways to model class inheritance in Haskell,
while giving the type checker enough information about the types so that it
could correctly reject cases where the type of an expression is not a subclass of
the superclass which was required. This use of phantom types therefore enabled
the type system to correctly, statically and strongly type check class inheritance
trees.

However, using phantom types has two major disadvantages:

• Long type names. For APIs which use inheritance extensively, type names
can become very long, which can result in the type checker outputting
error messages which are hard to decipher.

• Single-inheritance only. Phantom types cannot model an object-oriented
class hierarchy which uses multiple inheritance, regardless of whether the
multiple inheritance only allows interface inheritance (e.g. Java, C#) or
both interface and implementation inheritance (e.g. C++). Neither of
these scenarios can be modelled using phantom types, since a subclass
can only inherit from one superclass.

Since many component systems use multiple interface inheritance, phantom
types cannot be the only method of modelling inheritance in Haskell.

3.0.2 Representing multiple inheritance via type classes

In Lambada [2], a Haskell to Java language binding, Finne and Meijer show that
type classes can be used to augment phantom types, so that multiple inheritance
in object-oriented systems can be properly modelled in Haskell. Thus, if the
class Sub inherits from two Java interfaces AnInterface and AnotherInterface (as
shown in Listing 3.3 and visualised in Figure 3.1), one would simply augment
the Haskell code in Listing 3.2 with the code shown in Listing 3.4 to allow the
type system to represent this inheritance.

A method which is part of the interface declaration simply uses the type
variable constraint as part of its type signature. The function will then accept
objects only if they implement (inherit from) that interface. For example, the
type signature for a function foo which requires a parameter that implements An-
Interface would have the type signature foo :: AnInterface a ⇒ a → Thus,
both phantom types and type classes are used here to model a class hierarchy.
While this technique still suffers from the problems of hard-to-read type errors
and long type names, at least it is possible to model multiple inheritance, which
is a big step forward.

12

Listing 3.3: Java class hierarchy with multiple inheritance

class Super { . . . }

interface AnInterface { . . . }

interface AnotherInterface { . . . }

class Sub extends Super
implements AnInterface, AnotherInterface { . . . }

Figure 3.1: Visualisation of a Java class hierarchy with multiple inheritance.
Ellipses with solid outlines represent classes, and ellipses with dashed outlines
represent interfaces.

Listing 3.4: Phantom types augmented by type classes can model multiple in-
heritance

class AnInterface i
class AnotherInterface i

instance AnInterface (Sub a)
instance AnotherInterface (Sub a)

13

3.0.3 Moving on from phantom types

Shields and Peyton Jones [4] go one step further with type classes: they propose
a way to use only type classes and types to model an object-oriented class
hierarchy, thus not requiring phantom types at all. To model the Java class
hierarchy presented in Listing 3.3 (page 12) (visualised in Figure 3.1 on page
12), the Haskell code in Listing 3.5 (visualised in Figure 3.2) can be used.

Listing 3.5: Using only type classes to model multiple inheritance

class Super c
data SuperInstance −− some opaque type
instance SuperInstance Super

class AnInterface c
data AnInterfaceInstance
instance AnInterface AnInterfaceInstance

class AnotherInterface c
data AnotherInterfaceInstance
instance AnotherInterface AnotherInterface

class Sub
data SubInstance
instance Super SubInstance
instance AnInterface SubInstance
instance AnotherInterface SubInstance

The type signature for a function foo which requires an argument that is an
exact instance of the class Super would look like foo :: SuperInstance →
This would not allow any subclasses of Super to be used as an argument to the
function. To allow subclasses of Super to be passed to the function, the type
class Super is used as a type variable constraint. This is the same technique used
by Finne and Meijer [2] to implement Java interface inheritance in Lambada:
the function’s type signature would be foo :: Super a ⇒ a →

This use of only type classes to encode inheritance has several advantages
over using phantom types:

• The type checker can give more readable error messages if it detects a
type error.

• It is more elegant than using phantom types, and is more easily under-
stood. Haskell programmers already know that type classes can be sub-
classed: it is a small knowledge leap for them to understand that the same
system can also be used to model object-oriented subclassing, compared
to explaining how phantom types are used to model subclassing. (Why
learn two methodologies when one will suffice?)

While this scheme still has limitations (e.g. it cannot model covariant result
types), it is sufficient to model the typical class inheritance hierarchies used by
the vast majority of component systems.

3.1 Automatic class hierarchy generation 14

Figure 3.2: Visualisation of a class hierarchy with multiple inheritance using
Haskell type classes. Ellipses with solid outlines represent data types, and el-
lipses with dashed outlines represent type classes.

For all its advantages, using type classes to model inheritance has one draw-
back compared with phantom types: the type signature of a function that uses
subclasses isn’t quite as elegant as its equivalent using phantom types. If phan-
tom types are used, one could write foo :: Super a → . . . for a type signature
that accepts an argument which belongs to a class or subclass of Super; instead
of that, the type signature is now foo :: Super a ⇒ a → . . . , which is more
cumbersome.

For binding Haskell to component systems, the approach advocated by Shields
and Peyton Jones [4]—using a type class & data type per object-oriented class—
is sufficient to model an object-oriented class hierarchy, and works well. It is
capable of modelling multiple inheritance without difficulty, and is also reason-
ably elegant.

3.1 Automatic class hierarchy generation

The majority of language binding tools come with a program to automate the
process of making the desired component system’s API functions available to
the language we wish to bind to. This program is called an interface generator.

Current Haskell language binding tools1 typically use these to model the tar-
get API in Haskell. For example, the Gtk+HS [7] project, which binds Haskell to
the open-source GUI toolkit GTK+, relies on the C→Haskell [5] interface gen-
erator to model GTK+’s object-oriented class hierarchy in Haskell. C→Haskell
acts a as a pre-processor: it reads in C header files along with specially marked
up Haskell modules, and writes out normal Haskell modules which then contain
the Haskell mapping of the C API. While this is a perfectly fine way of pro-
ducing an API binding to a foreign language, it would be more convenient this
pre-processing stage can be eliminated.

1http://www.haskell.org/libraries/#interfacing

3.1 Automatic class hierarchy generation 15

3.1.1 Meta-programming the interface generator

The introduction of version 6.0 of the Glorious Glasgow Haskell Compiler presents
a powerful new idea which we can use to eliminate this pre-processing stage:
Template Haskell. Template Haskell is a form of compile-time meta-programming.
Meta-programming is writing a program which generates programs; compile-
time meta-programming allows this code generation to happen at compile-time.
As compilation happens, the compiler can execute user-written code, to produce
the final code that is then placed into the resulting program. Template Haskell
can be thought of as a powerful macro system, or, to quote from the original
Template Haskell paper by Sheard and Peyton Jones [8], Template Haskell “al-
low[s] programmers to compute part of their program rather than write them,
and to do so seamlessly and conveniently.” (Emphasis in original.)

Template Haskell gives the programmer data types which represent Haskell
syntax; for example, a function may output a value of a type Exp, which repre-
sents a Haskell expression, or it may output a value of type Dec, which represents
a Haskell declaration. Values of these syntax data types are called templates,
and can be executed at compile-time at various splice points in the program,
so that template expressions and template declarations are evaluated at these
splice points, just as if the spliced code were written there by the programmer
instead of being generated by the templates. Since functions which generate
templates are treated as normal functions, they can be called with parameters
in splice points and be given customised data structures just as any normal
function would. This enables generation of different templates, depending on
what parameters were given to the template-generating function.

Listing 3.6 shows how to write the classic C printf function in Template
Haskell, and how to use the printf template.

While Template Haskell has opened up many possibilities to the Haskell
world, let us examine just one application of it: its role as a possible automated
interface generator, thus fulfilling the same role as tools such as C→Haskell,
Green Card2, or HaskellDirect3. One can use Template Haskell as a sophisti-
cated pre-processing system, but instead of generating text files that contain
Haskell code—as most interface generators do—the Haskell code is generated
directly, in the form of templates. By calling template functions with the appro-
priate parameters, the resulting code produced by the templates can model the
target API. Since the compiler executes the template code at compile-time, not
only can templtes perform the interface generation, but the interface generation
is far more convenient since it is integrated into the compilation process. There
is no separate pre-processor step required.

Of course, this simple means of using Template Haskell as an interface gener-
ator still requires the programmer to tell the template functions which interface
APIs to generate; e.g. a Template Haskell-based IDL compiler would still require
an IDL specification in some form. So far, the only difference that Template
Haskell has made is saving a step in the build process of an application, by
eliminating the need to execute a pre-processor before compilation.

2http://www.haskell.org/greencard/
3http://www.haskell.org/hdirect/

3.1 Automatic class hierarchy generation 16

Listing 3.6: Implementing and using printf in Template Haskell

−− works with %d and %s
data Format = D | S | Literal String

deriving (Show)

parse :: String → [Format]
parse ”” = []
parse (’%’:’ d ’: xs) = D:(parse xs)
parse (’%’:’ s ’: xs) = S:(parse xs)
parse s = Literal upToAPercent:(parse afterPercent)

where
upToAPercent = takeWhile (6= ’%’) s
afterPercent = dropWhile (6= ’%’) s

gen :: [Format] → Expr → Expr
gen [] x = x
gen (D:xs) x = [| \n → $(gen xs [| $x ++ show n |]) |]
gen (S:xs) x = [| \ s → $(gen xs [| $x ++ s |]) |]
gen (Literal s :xs) x = gen xs [| $x ++ $(string s) |]

printf :: String → Expr
printf s = gen (parse s) [| ”” |]

−− using printf
printfTest = do

$(printf ”A number %d and a string %s.\n”) 69 ”foo”
$(printf ”Just a number %d”) 7

3.1 Automatic class hierarchy generation 17

3.1.2 Autogeneration of Interface Definitions

The three principle virtues of a programmer are Laziness, Impa-
tience, and Hubris. — Larry Wall, “Programming Perl”

It would be very convenient if a template-based interface generator can auto-
matically find the interfaces presented by the target API. If this is possible, then
the task of mapping a component system’s API in Haskell can be completely
automated.

In fact, automating the search for interface definitions in Template Haskell
would be exactly the same as automating it if a standalone tool such as C→Haskellwas
being used, because arbitrary IO can be performed in Template Haskell via the
quotation IO monad. While templates are being spliced in by the compiler,
files or network sockets can be opened and even external programs may be
executed—all during compilation!

Ian Lynagh uses this technique to great effect when creating a Haskell inter-
face to the UNIX curses library [9]. He first uses Template Haskell to splice in
declarations of FFI foreign import statements automatically into a module, which
eliminates the need for the programmer to manually write those declarations.
However, Lynagh then proceeds to build the C wrapper functions required by
the just-declared FFI imports as Strings, writes out those C wrapper functions
to C source and header files using the quotation IO monad, and then calls gcc
inside the splice to compile the C wrapper functions which were just written!

So, by using Template Haskell and the quotation IO monad, Lynagh manages
to completely automate building the curses binding. With no preparation
beforehand, a programmer who wishes to access the curses API simply has to
put in one splice in his program, and the templates will generate the code to
build the binding, and expose the curses API in Haskell to the programmer—in
one line of code. It would be easy to modify Lynagh’s curses example to suit
various other APIs: interface definitions could be generated from header files,
XML definitions of the API or JavaDoc documentation. This shows that while
Template Haskell is certainly useful as a simple replacement for an interface
generator, it wields far more power when it can be used to automatically find
the interface information as well.

The convenience that this brings to the programmer should not be underes-
timated. Arguably, a large reason why Haskell bindings to foreign APIs are not
used more often is that programmers simply don’t want to go to the trouble of
building an API binding. At the very minimum, the interface generator must
be built. Often, the programmer then has to find the interface definitions, and
give the interface generator those definitions using a special syntax, so that the
final API binding can be produced. Template Haskell eliminates those steps:
instead, the programmer simply has to write a few extra lines of code to splice
in the templates, which do all the magic work behind-the-scenes during com-
pilation. Hopefully, programmers will take advantage of more API bindings if
they are simpler to use.

3.1.3 Reflecting on Interface Definitions

Besides using the quotation IO monad to automatically search for and generate
interface definitions, Template Haskell can also execute FFI functions in a splice,
and let the FFI functions return the information necessary for the generation of

3.2 Upcasting and Downcasting Objects in the Class Hierarchy 18

interface definitions. While this is not as flexible as performing arbitrary IO to
derive interfaces, it is also sufficient (and preferred) when interfacing to compo-
nent systems or object-oriented systems with reflection capabilities. Template
Haskell simply FFI-calls the component system’s reflective functions to locate
components in the system and derive their interfaces. This has a number of
advantages over using the quotation IO monad to generate the interfaces:

• Since the component system’s reflective functions are invoked directly,
it is guaranteed that the interface definitions given to the generator are
accurate.

• It is safer than performing IO: the programmer is assured that the Haskell
template code cannot execute arbitrary programs, unlink files, or write
politically incorrect messages all over the user’s terminal.

Thus, a target API’s reflective capabilities can be used to automatically
derive the information necessary to generate the interfaces. Again, all that may
be necessary on the user’s part is writing a few splices in their code, to direct the
interface generator will do its work at compilation time using Template Haskell.

3.2 Upcasting and Downcasting Objects in the
Class Hierarchy

No-one likes to be typecast, anyway. — Larry Wall

All object-oriented systems have container objects: these are objects which,
as the name implies, can contain other objects. Canonical examples of container
objects include lists, dictionaries and finite maps; other not so immediately
obvious examples include a GUI object-oriented toolkit, using container classes
such as a GUI window which can contain many other types of GUI objects.

When the contained object is retrieved from the container object, there are
two possibilities: either the retrieved object will be of the exact same type that
it was before it was inserted into the container, or it may be a supertype of the
original object4. To obtain the original type of the object, one must cast (or
coerce) the retrieved object to its original type. Casting from a supertype to
one of its subtypes is more specifically known as downcasting ; casting from a
subtype to a supertype is called upcasting.

Since upcasting and downcasting is a necessary operation in an object-
oriented class hierarchy, it is essential to implement those operations to properly
model an object-oriented class hierarchy in Haskell.

To provide an example class hierarchy, recall the Java code in Listing 3.3
(page 12), visualised in Figure 3.1 (page 12). Contrast the code with the Haskell
equivalent in Listing 3.5 (page 13), visualised in Figure 3.2 (page 14). In this
small class hierarchy, there are six possible casting operations which can be
performed:

1. an upcast from Sub to Super,
4If a type α is a subtype of another type (i.e. it inherits from) β, then β is a supertype of

α.

3.2 Upcasting and Downcasting Objects in the Class Hierarchy 19

2. a downcast from Super to Sub5,

3. an upcast from Sub to AnInterface,

4. a downcast from AnInterface to Sub5,

5. an upcast from Sub to AnotherInterface,

6. a downcast from AnotherInterface to Sub5,

Note that the names of the classes used here (such as Sub and AnInterface)
correspond to the names of the classes given in the object-oriented Java class
hierarchy. The corresponding casts in the Haskell class hierarchy would be
upcasting and downcasting between SubInstance, SuperInstance, AnInterfaceIn-
stance, and AnotherInterfaceInstance.

The problem is how to provide such upcasting and downcasting in Haskell.
Haskell does not innately provide any such casting operations in the base lan-
guage: there is no equivalent to C’s (int ∗) operator in Haskell to, e.g. cast
the result of a malloc expression from a void ∗ to an int ∗. How, then, can
upcasting and downcasting be performed in Haskell?

3.2.1 Upcasting and downcasting with fromx and tox

One solution is to require any instances of the type class Super to implement
the two functions shown in Listing 3.7: toSuperInstance and fromSuperInstance.

The function toSuperInstance will upcast an expression of any type which
belongs to the type class Super to the SuperInstance data type: Listing 3.8
demonstrates how it can be used to perform upcasting.

The function fromSuperInstance is slightly more complex; it will cast an ex-
pression of the SuperInstance type to an ambiguous type variable s. Listing 3.7
shows that the type signature of fromSuperInstance is :: SuperInstance → s,
which means that the final type of fromSuperInstance must be explicitly spec-
ified, or fixed, for the type system to determine exactly which implementation
of fromSuperInstance to call. Listing 3.8 shows how to use fromSuperInstance to
perform downcasting, and Figure 3.3 visualises how the downcast is performed.

This use of fromx and tox functions to perform type conversion is not a
novel idea: the Haskell 98 standard uses this exact technique by defining the
functions fromInteger and fromInt in the Num type class.

The interface generator C→Haskell [5] also uses this technique. It provides
a feature named class hooks, which generates two functions per object-oriented
class. These two functions are isomorphic to the fromx and tox functions de-
scribed in this section.

3.2.2 Convenient casting: upcast and downcast

While the respective fromx and tox functions can perform the casting, Listing
3.8 (page 20) shows that they can be confusing to use because of the syntax
difference between upcasting and downcasting. While upcasting uses the rea-
soanbly straightforward syntax toSuperInstance sub, downcasting is more cum-
bersome: fromSuperInstance super :: SubInstance. Moreover, the inconsistent

5The downcast assumes that the object being casted is actually of the type Sub.

3.2 Upcasting and Downcasting Objects in the Class Hierarchy 20

Listing 3.7: Up/downcasting functionality for the Super object-oriented class

class Super s where
−− give the type system an assertion that a expression foo of type
−− ‘s’ can be ‘ cast ’ to the SuperInstance type , by fixing the
−− type variable ‘ s ’ with ”foo :: SuperInstance”
toSuperInstance :: s → SuperInstance
−− ‘cast’ any instances of Super, from the instance type to an
−− ambiguous type variable which belongs to the type class
fromSuperInstance :: SuperInstance → s

data SuperInstance = SuperInstance −− some opaque data type
data SubInstance = SubInstance

instance Super SuperInstance where
−− toSuperInstance :: SuperInstance → SuperInstance
toSuperInstance x = x −− or also ”toSuperInstance = id”
−− fromSuperInstance :: SuperInstance → SuperInstance
fromSuperInstance x = x −− or also ”fromSuperInstance = id”

instance Super SubInstance where
−− toSuperInstance :: SubInstance → SuperInstance
toSuperInstance (SubInstance) = SuperInstance
−− fromSuperInstance :: SuperInstance → SubInstance
fromSuperInstance (SuperInstance) = SubInstance

Listing 3.8: Using fromSuperInstance and toSuperInstance to perform casting

−− an instance of super ; we only care about the type for this example,
−− the value doesn’t matter
super :: SuperInstance

−− downcasting from the ‘super’ type to the ‘ sub’ type
sub = fromSuperInstance super :: SubInstance

−− upcasting from the ‘sub’ type to the ‘ super ’ type
super’ = toSuperInstance sub

3.2 Upcasting and Downcasting Objects in the Class Hierarchy 21

Figure 3.3: Visualisation of downcasting from SuperInstance to SubInstance, in
a Haskell class hierarchy

syntax between upcasting and downcasting is rather unfriendly to a program-
mer’s memory.

Casting should use a convenient, consistent syntax: downcast super :: SubInstance
for downcasting, and upcast sub :: SuperInstance for upcasting. It is possible

to do this by using multi-parameter type classes: a Haskell 98 extension which,
as the name indicates, permits more than one parameter for a type class. List-
ing 3.9 shows an implementation of upcast and downcast using multi-parameter
type classes.

Listing 3.9: The downcast and upcast functions, implemented using multi-
parameter type classes

class Cast sub super where
upcast :: sub → super
downcast :: super → sub

data SuperInstance = SuperInstance −− some opaque data type
data SubInstance = SubInstance

instance Cast SubInstance SuperInstance where
upcast SubInstance = SuperInstance
downcast SuperInstance = SubInstance

One interesting point about using a dedicated Cast type class to implement
the upcast and downcast functions is that the casting function is completely
independent of objects. An object-oriented class hierarchy is not required to
use these casting functions.

There is no reason why a more general cast function, which performs either
an upcast or downcast, cannot be implemented. Indeed, this more closely mir-
rors the usage of the cast operation in C, C++ and Java. However, the definition

3.3 Class Objects 22

of a Cast type class which requires both upcast and downcast functions ensures
that it is impossible to implement an upcast function without implementing its
corresponding downcast function.

3.2.3 Statically type-checking casting

By listing valid casts as instances of the Cast type class, the type checker is made
aware of all possible casting operations, so all casts are statically type-checked
to see if they are valid. One cannot upcast from Foo to Bar if there has been
no declaration that Foo Bar is an instance of the Cast.

3.2.4 Dynamically type-checking casting

Many component systems allow for dynamically typed objects, which implies
that there may be objects used whose types are not known at compile-time.
It is even possible for the component system to demand-load components at
runtime, send messages to those components, and receive a message reply which
is a ambiguous object whose true type is unknown. However, according to
knowledge gained at compile time about the system, this ambiguous object’s
type should be a subtype of AnInterface. Casting these objects to an interface6

subtype is common practice in many component systems.
Component systems and object-oriented programming languages therefore

support and use dynamic casts extensively. As such, convenient support for
dynamic casts must be made available in Haskell. While implementing dynamic
casts varies from one component system to another, it is possible to provide a
universal approach for their implementation.

A dynamic cast is simply a type check performed at runtime by the compo-
nent system. Therefore, to implement dynamic casts, the upcast and downcast
functions call a function provided by the component system (via the FFI), which
verifies that the cast can be performed. An appropriate action—such as throw-
ing a Haskell exception—can be taken if the cast fails; otherwise, the dynamic
cast proceeds normally.

3.3 Class Objects

In some object-oriented languages, defining a new class results in not only a new
type, but also a new class object. Class objects are concrete representations of
that class, and are typically used as factory objects which produce new instances
of the class on request. Many object-oriented languages which use reflection have
class objects, e.g. Smalltalk, Objective-C and Java7. To properly model these
object-oriented systems’ class hierarchies, Haskell must support the use of class
objects.

Representing a class object in Haskell can be performed via a function which
returns the class object, by calling the appropriate methods in the target object-
oriented language. In addition, the Haskell class hierarchy model should be

6‘Interface’, as used here, is equivalent to the Java definition of the term: i.e. a class which
only specifies type signatures for its methods, and possesses no function implementations.

7Java hides the use of the class object as a factory, by having an explicit new operator.
In contrast, Objective-C requires that the programmer directly invoke a method on the class
object to produce an instance object

3.3 Class Objects 23

Figure 3.4: Visualisation of a Haskell class hierarchy which includes class ob-
jects. Ellipses with solid outlines represent data types, and ellipses with dashed
outlines represent type classes.

extended to support two different inheritance trees: one inheritance tree for
class instances, and another inheritance tree for class objects. Since there are
now two trees, it is also advisable to provide two new data types which act as
the root of the instance and class object trees. Listing 3.10 shows how such a
mapping can be achieved; for a visual perspective on the class hierarchy, see
Figure 3.4.

A more elegant way to retrieve class objects

Even though this class hierarchy model enables retrieving class objects, it is
still slightly cumbersome to use getClassObjectFromName for this task; writ-
ing getClassObjectFromName ”Sub” will not work since the final type of that
expression is still a type variable which may be any class object.

It would be preferable to have a dedicated getClassObject function which only
needs to be given a type signature to determine which class object to retrieve,
e.g. getClassObject :: SubClassObject. Listing 3.11 shows how using a recursive
let definition can be used to write such a getClassObject function. Since the
definition is of getClassObject is not straightforward to understand, Appendix
A (page 63) provides an explanation of how the function works.

Listing 3.11 also provides two functions which represent class objects: Sub
and Super . The rest of this thesis will assume that a function with a classname
naming scheme represents a class object.

Metaclass objects

Some object-oriented languages also have meta-class objects (and possibly even
meta-meta-class objects), which serve as the class objects of the class objects. It
is straightforward (if not a little bit tedious) to provide three or more inheritance
trees to represent such (meta-)meta-class objects, and to implement a similar

3.3 Class Objects 24

Listing 3.10: Modelling a class hierarchy which includes class objects

class Object o
data UniversalObject −− can represent any object
instance Object UniversalObject

−− the inheritance tree for instances
class Object i ⇒ Instance i
data InstanceObject −− can represent any instance object
instance Object InstanceObject
instance Instance InstanceObject

class Instance s ⇒ Super s
data SuperInstance −− some opaque type
instance Object Super
instance Instance SuperInstance
instance Super SuperInstance

class Instance s ⇒ Sub s
data SubInstance
instance Object SubInstance
instance Instance SubInstance
instance Super SubInstance
instance Sub SubInstance

−− the inheritance tree for class objects
class Object c ⇒ Class c where
−− Given the name of a class , returns its class object
getClassObjectFromName :: String → c
−− Given a class object , returns its name
classObjectName :: c → String

data ClassObject −− can represent any class object
instance Object ClassObject
instance Class ClassObject

class Class s ⇒ SuperClass s
data SuperClassObject
instance Object SuperClassObject
instance Class SuperClassObject
instance SuperClass SuperClassObject

class Class s ⇒ SubClass s
data SubClassObject
instance Object SubClassObject
instance Class SubClassObject
instance SuperClass SubClassObject
instance SubClass SubClassObject

3.4 Representing Components and Objects in Haskell 25

Listing 3.11: The getClassObject function

getClassObject :: Class c ⇒ c
getClassObject =

let
x = upcast (getClassObjectFromName (classObjectName x))

in
x

−− usage:
Sub = getClassObject :: SubClassObject

Super = getClassObject :: SuperClassObject

getMetaclassObject function if one is needed. The classname syntax used to
retrieve a class object can be logically extended to classname for metaclass
objects.

3.4 Representing Components and Objects in
Haskell

Now that an approach to model and automatically generate an object-oriented
class hierarchy in Haskell is available, an obvious problem is how to represent
an object or component in Haskell. What Haskell data type should be given to
foreign components?

The question of how to represent objects in Haskell can be made more spe-
cific: what is the most convenient way to represent the object in Haskell? One
can have two non-exclusive points of view about the convenience of an object
representation: is it convenient for an author who is writing a binding from
Haskell to the component system to manipulate objects, and is it convenient
for a user of such a binding to manipulate objects? These two goals should
be kept in mind, so that both writing a binding and using the binding is as
straightforward as possible.

One obvious solution to this problem is simply duplicating each of the desired
component’s properties in a Haskell data type. Every object has methods and
perhaps some public instance variables. If the Haskell environment can directly
access these properties, perhaps by writing to the object’s address space (for
example, by making the object an instance of the FFI Storable type class), then
component communication simply consists of direct function calls to invoke
methods, reading and writing an object’s instance variables can be performed
with peek and poke.

This approach of duplicating as much of the target component as possible
inside the Haskell environment has two drawbacks:

1. The target component system is not likely to expose the object’s internals
so easily, since encapsulation is an extremely important goal of component
systems. A CORBA or DCOM component may reside on an Internet e-

3.4 Representing Components and Objects in Haskell 26

Business Enterprise Application Server running on a different operating
system or architecture, which makes it impossible to directly replicate the
component’s address space layout in the Haskell environment.

2. Representing as much of a component as possible increases—not decreases—
the cost of marshalling the component to and from the component system.
Any direct representation of an object’s data in Haskell requires code in
the Haskell environment to perform operations on the data.

Given these drawbacks, a logical alternative solution is to use the most
abstract representation of an object or component, and this solution will indeed
suffice for the majority of component systems. For instance, the most abstract
representation of an object in Objective-C is simply a C pointer, which is easy
to represent and marshal in Haskell. Similarly, Java uses an object reference
to represent an object, which is the Java Virtual Machine’s equivalent to a C
pointer.

By using a highly abstract representation of a foreign component, a Haskell
binding can use of all the component system’s native capabilities to operate
on the component, instead of re-writing all those operations in the component
binding. After all, the component system must know how to access its own
components, no matter how abstract its representation is! This approach is
also less dependent on the component’s representation, which allows the tar-
get component system to change and evolve without affecting bindings to the
system.

Pointers to components

Since many object-oriented languages use a pointer as their most abstract rep-
resentation of an object, how can one represent a pointer in the Haskell envi-
ronment? The FFI provides a Ptr type for exactly this purpose, so it seems that
this problem is easily solved. While it is easy to use type synonyms such type
Super = Ptr () and type Sub = Ptr () to use void pointers to represent objects,
there are two significant problems with this approach:

1. Pointers are typed. Both C and Haskell’s type systems distinguish between
an int ∗ (Ptr Int) and a void ∗ (Ptr ()), for example. Using type synonyms
does not enable the type checker to distinguish between different types of
objects. The Super and Sub types given in above example would be treated
as exactly the same type.

2. Since type synonyms are nothing more than aliases, each type synonym
cannot be made instances of different type classes. This renders it impos-
sible to use the type class & data type scheme described by Shields and
Peyton Jones [4] to model the object-oriented class hierarchy.

These two problems indicate that either the Haskell data or newtype decla-
rations must be used to declare Ptrs. Here, the less popular newtype declaration
is the better option. To see why, the Haskell 98 report explains what newtype
is intended for:

A declaration of the form newtype introduces a new type whose
representation is the same as an existing type. The [new] type re-
names the datatype . . . It differs from a type synonym in that it

3.4 Representing Components and Objects in Haskell 27

creates a distinct type that must be explicitly coerced to or from
the original type. Also, unlike type synonyms, newtype may be used
to define recursive types . . . These coercions may be implemented
without execution time overhead; newtype does not change the un-
derlying representation of an object.

New instances . . . can be defined for a type defined by newtype
but may not be defined for a type synonym. — Haskell 98 report
[10], Section 4.2.3.

An important property of newtypes not quoted from the report is that any
newtypes created are automatically marshallable by the FFI, if the type that
they rename is also marshallable by the FFI.

Another useful technique is to make the newtype declaration recursive, e.g.
newtype Object = Object (Ptr Object). This allows any methods which unpack
the data type to still observe that the pointer in the data type does is indeed
typed, and points to an Object. Lazy evaluation ensures that the parameterised
type argument in Ptr will never be evaluated. C→Haskell uses this technique
when automatically generating pointer declarations with its pointer hooks.

Chapter 4

Component Communication

Given a design for modelling an object-oriented class hierarchy in Haskell, we
now address the question of how to communicate with other components. While
the way to model an object-oriented class hierarchy is powerful, is it possible
to communicate with other objects/components without sacrificing any of the
power of this model? It is possible to build well-typed messages which contain
these objects, send those messages to and from other objects, and receive object
types as a message reply? Is it possible to do this while still retaining features
such as Haskell’s type inference?

4.1 Sending Messages: the Low-Level Interface

The first problem to overcome is how to actually send messages to and receive
messages from other components. This problem is tackled first, because it may
have a significant impact in how the rest of the communications library is de-
signed. For example, if the low-level messaging functions are allowed to send
and receive messages which contain values of any type, then this may ease the
design of the rest of the communications library, compared to the situation
where the types are restricted.

4.1.1 The Foreign Function Interface

Other Haskell language bindings have all used the standardised Foreign Function
Interface (FFI) to call functions written in other languages, and for good reason.
The FFI is the dé facto way for Haskell environments to interact with external
environments such as the operating system or other programming languages.
The FFI is most often used to call C functions, since the majority of operating
system APIs are written in C. However, it is not limited to C: the FFI is designed
in such a way to perform function calls for any language or platform, and in its
present form already incorporates support for calling functions written for the
C, C++, .NET, Java Virtual Machine, and Win32 platforms.

4.1.2 The FFI: Extend or Embrace?

Since the FFI is extensible, there are two possibilities for how to use it to
communicate with component systems:

4.1 Sending Messages: the Low-Level Interface 29

1. extend the FFI to natively support the desired component system, en-
abling direct method invocation on components, or

2. implement proxy or stub functions in a language which the FFI already
supports, and rely on the proxy functions to establish communication
channels with the component system.

It is tempting to extend the FFI to natively support communicating with
the desired component system, but there one major practical drawback to this
approach: it’s a lot of work. An FFI extension would have to be implemented
for each different Haskell compiler or interpreter. To emphasise this point, many
Haskell environments only support the C and Win32 calling conventions. Some
component systems, such as CORBA, do not even define a standard calling con-
vention, so extending the FFI to natively support the communications protocols
of those component systems doesn’t make any sense—there is no standard com-
munications protocol to support! To extend the FFI to communicate with these
sorts of systems, we would have to instead target one or more particular imple-
mentations of the component system’s reflection service. For example, instead
of bridging to CORBA, the FFI could be extended to enable communication via
CORBA’s IIOP messaging standard, or perhaps via a concrete Object Request
Broker implementation such as ORBit.

So, while having a native method of communication with the component sys-
tem would be quaint, we will instead choose to take advantage of the popular
support for the C and Win32 FFI bindings. As long as the goal of communi-
cating with the component system is achieved, this design decision will enable
a component interface to work across multiple Haskell implementations, and is
arguably a less complicated and less error-prone path to walk.

It can be said that this choice simply shifts the problem of marshalling mes-
sages from Haskell to whatever proxy language is chosen in for the component
binding (such as C). However, the point of this problem-shift is that it is far
more likely that bindings already exist for talking to the component system
in the external language. There are numerous implementations of the IIOP
messaging protocol in C, for example.

Note that by using the FFI to communicate with external components, the
implementation of the communications library will be bound by the FFI’s ca-
pabilities. For example, the FFI restricts the type definitions of the foreign
functions: it allows only a small set of basic foreign types to be passed between
external functions and Haskell. Moreover, if a specific FFI language binding
such as C is chosen, the types which can be used will be further restricted by
the C-specific part of the FFI.

In reality, this restriction is not too worrisome since it is possible to inter-
change arbitrary data types back and forth from Haskell, as long as those data
types are instances of the Storable type class. (Keep in mind that the FFI per-
mits the construction of Storable instances for any data type, and this is exactly
what interface generation tools such as C→Haskell—or Template Haskell—can
be used for.) Still, this means that we must be conscious about the FFI’s re-
strictions during the design of the communications interface.

4.1 Sending Messages: the Low-Level Interface 30

4.1.3 C as the Proxy Language

To keep examples simple, we will assume that C is being used as a proxy lan-
guage for the rest of this thesis. The Haskell environment will call C functions
to send messages, and it is the responsibility of the C functions to communicate
with the component systems. How the C implementation works is irrelevant: it
is sufficient as long as it can forward the messages from Haskell to the compo-
nent system, and return any message replies from the component system back
to Haskell.

C has been chosen not only because it is the most common FFI language
binding available, but also because it is quite restrictive. Other proxy languages
or platforms such as .NET or the Java Virtual Machine can of course be used, but
they may have extra features (such as innate ad-hoc polymorphism capabilities)
which C does not possess. It is ideal to design a communications interface which
will be usable on as wide a range of FFI language bindings as possible.

4.1.4 Messages, Receivers & Message Expressions

In Java, a method invocation on a component is performed by writing aComponent
.aMethod(argument1, argument2, . . .). Using this example, let us define a few
terms more specifically:

Message The name of the method to invoke, along with any of its arguments;
e.g. aMethod(argument1, argument2, . . .).

Receiver The object/component which receives the message, e.g. aComponent.

Message Expression A particular instance of a message together with a cor-
responding receiver, i.e. a concrete representation of a method invocation.

Thus, to send a message, one needs to pair it with a receiver, which produces
a resulting message expression.

It is possible to represent these elements of a method invocation in Haskell
by defining them as data types. For example, one possible way to define these
types is shown in Listing 4.1.

Listing 4.1: Definitions of the Message, Receiver, and MessageExpression data
types

data Message a = Message a
−− a is the message’s arguments, given as tuples such as (foo , bar) .
−− Note that we can’t use a list to represent the arguments, since
−− each argument may be a different type.

type Receiver = UniversalObject

data MessageExpression a = MessageExpression (Message a) Receiver

However, there is a problem if method invocations are defined using such
data types: eventually, we must call the C proxy message functions to send

4.1 Sending Messages: the Low-Level Interface 31

messages, which means that the Message type must be a type which can be
marshalled by the FFI. So, the Message type must either be basic foreign type
or an instance of the Storable FFI type class, which implies that implementations
of the functions required by Storable (such as peek and poke) must be written.

In order to make marshalling easier, a Haskell data type which is already
an instance of Storable can be used: the humble pointer (Ptr) type. Instead of
defining the data types for Message, Receiver and MessageExpression similarly
to Listing 4.1 (page 30), it is sufficient to define them as Ptrs and simply use
extra C functions to set the primitive information about a message expression’s
contents, as shown by Listing 4.2.

Listing 4.2: Primitive MessageExpression functions

newtype MessageExpression =
MessageExpression (Ptr MessageExpression)

type Receiver = UniversalObject

foreign import ccall
makeMessageExpression :: IO MessageExpression

foreign import ccall
setReceiver :: MessageExpression → Receiver → IO ()

foreign import ccall
setMethodName :: MessageExpression → CString → IO ()
−− assuming that the method name to invoke is a C string

foreign import ccall
setCIntArgument :: MessageExpression → Int → CInt → IO ()
−− the ‘Int ’ argument specifies which index in the argument list
−− to set

foreign import ccall
setCStringArgument :: MessageExpression → Int → CString → IO ()
−− (repeat for the rest of the C basic foreign types) . . .

There are a few noteworthy points about representing message expressions
in this manner:

• Defining a data type using the newtype keyword instead of data will auto-
matically make the newly defined type marshallable, as long as the type
referred to in the newtype declaration (in this case, a Ptr) is also marshal-
lable.

• Only a MessageExpression data type needs to be defined.

• There is no need to marshal an argument list (at least, not in the low-level
communications layer), which may be of varying length and can contain
elements of different types. Instead, extra C functions are available to
individually set each argument in a message expression.

4.1 Sending Messages: the Low-Level Interface 32

A disadvantage of this design is that there must be one function for every
possible type of an argument, but this not a problem since there are only
a limited number of basic foreign C types. This design is also completely
type-safe, in both the Haskell and C environments.

• The representation of the message expression has been moved from the
Haskell environment to the C environment. Exactly how the message ex-
pression is represented in the C environment is completely inconsequential
to the Haskell/C interface.

This has another extra benefit: if the component system has already de-
fined a data type for a method invocation or message expression, the C
proxy functions can simply use that data type to represent the message
expression, instead of having to define one. This may make communica-
tion with the component system a bit more speedy, since the C functions
(and thus the Haskell code) may be using the component system’s native
representation of a method invocation. Of course, one could argue that
this speed benefit would also apply if the native data type was represented
in Haskell, but again, the component system is likely to have C bindings
already available, which saves writing more code.

After defining the C proxy functions, it is now possible to build message
expressions in Haskell. Still, message expressions are relatively useless if they
are never used, so let us now address how to send the message expressions to
the component system.

4.1.5 The mailman arrives

The one thing which is required to send a message expression is simply a defi-
nition of the C function to send it, as shown in Listing 4.3.

Listing 4.3: sendMessageExpressionWithNoReply interface

foreign import ccall
sendMessageExpressionWithNoReply :: MessageExpression → IO ()

This leaves the responsibility of the actual message sending completely in the
hands of the C function. How the message sending is performed varies between
component systems, and is thus not a concern for the Haskell/C interface.

Of course, this assumes that the message expression does not receive a reply
of some sort. Since it is rather desirable to receive replies from the component
system, Listing 4.4 defines a few more C functions which can extract the reply
from a sent message expression, and pass it back to Haskell.

Again, the C functions are responsible for extracting the reply and passing
them back to Haskell, and how this is performed depends on the component
system.

Note that using these low-level functions to receive replies from messages
may break type safety : if sendMessageExpressionWithIntReply is called and the
C function passes back a CString as a result, then behaviour from that point is

4.2 Creating a friendlier mailperson 33

Listing 4.4: Other sendMessageExpressionWithxreply functions

foreign import ccall
sendMessageExpressionWithIntReply :: MessageExpression → IO Int

foreign import ccall
sendMessageExpressionWithIntReplyP :: MessageExpression → Int
−− ‘Pure’ version of the above (has no side effects) ; useful for ,
−− e.g. using a math library component. Define a pure version
−− for each type of reply if appropriate .

foreign import ccall
sendMessageExpressionWithCStringReply ::

MessageExpression → IO CString

foreign import ccall
sendMessageExpressionWithUniversalObjectReply ::

MessageExpression → IO UniversalObject

−− etc . . .

undefined. If the component system’s message passing protocol has the func-
tionality to obtain the type of the message reply, it is certainly possible to add
in type checks which will be performed at run-time and return a exception if
such a type mismatch occurs. This is a prudent idea, and it is up to the C
proxy functions to perform these dynamic type checks and propagate any type
errors back to the Haskell environment. Type checking can also be enforced
if it is known at compile-time that sending a particular message will always
evoke a reply of a certain type. However, it is not the responsibility of the
low-level communications interface to perform this static type checking: since a
component system may be inherently dynamically typed, the message sending
functions must also be dynamically typed.

Now that it is possible to build message expressions and send them to a
receiving component, we have a complete low-level interface in Haskell to com-
municate with a component system. It is important to note that the concept of
a message expression and the corresponding C functions to act on it are gener-
alised enough to work with any component or object-oriented system, and that
an existing C binding for the component system can be used, if one is available,
to implement most, if not all, of these functions—which saves much time and
effort.

4.2 Creating a friendlier mailperson

While the low-level communication interface is necessary, it is evident that using
these functions is not particularly convenient. Not only is it necessary to set the
arguments of a message expression individually, but different functions must be
invoked depending on what types the arguments are. Thus, the next priority is
to wrap the low-level functions with a higher-level interface, so a programmer

4.2 Creating a friendlier mailperson 34

can write code that builds & sends message expressions in one line, instead of
forty-two.

A convenient interface would be to have a generic sendMessage function,
which can be used to send a message that contains an arbitrary number of
arguments to any receiver, as shown in Listing 4.5.

Listing 4.5: An ideal interface for sendMessage

sendMessage aReceiver ”aMethodName” arg1 arg2 arg3 −− :: IO ()
sendMessage anotherReceiver ”anotherMethod” arg1−− IO ()
−− sendMessage may also return a value:
aNumber ← sendMessage yetAnotherReceiver

”yetAnotherMethod” arg1 arg2 −− IO Int

4.2.1 Setting the Message Arguments

Perhaps the most cumbersome aspect of the low-level interface are the functions
which set the arguments of a message: setIntArgument, setCStringArgument, etc.
These functions are used in the same manner, except that the programmer must
call a different version of the function depending on the type of the argument
that they wish to set. This is a perfect example of ad-hoc polymorphism, and
Haskell offers type classes to solve this exact problem, as shown in Listing 4.6.

Listing 4.6: Using ad-hoc polymorphism to write setArgument

class Storable a ⇒ Argument a where
setArgument :: MessageExpression → Int → a → IO ()

instance Argument CInt where setArgument = setCIntArgument
instance Argument CString where setArgument = setCStringArgument
instance Argument UniversalObject where

setArgument = setUniversalObjectArgument
−− etc . . .

Now, to send a message with the arguments (6, ’ n’) , instead of writing
setCIntArgument 1 6; setCharArgument 2 ’n’, we instead write setArgument 1 6;
setArgument 2 ’n’. The burden of selecting the appropriate function is shifted
from the programmer to the type system.

This approach of overloading the functions which marshals individual argu-
ments is very similar in concept to the approach taken by Lambada [2], although
the equivalent type class used in Lambada (named GoesToJava) can marshal
more than one argument. Our Argument class works with just one argument.

4.2.2 Sending Variable Arguments in a Message

In the ideal version of sendMessage in Listing 4.5, it is possible to set the mes-
sage arguments by simply passing them to sendMessage as function parameters.

4.2 Creating a friendlier mailperson 35

Unfortunately, it is impossible to define such a version of sendMessage, since the
number of message arguments can vary from message to message, and Haskell
98 does not permit definitions of functions with a variable number of function
parameters. This is for good reason: if a variable number of function param-
eters were permitted, two powerful Haskell features—partial application and
currying—would be far harder (if not impossible) to implement. How, there-
fore, do we implement a generic sendMessage function which has a fixed number
of parameters, yet still allows for sendMessage to work with variable numbers of
arguments per message?

One solution is to allow for one of the parameters in sendMessage to con-
tain an arbitrary number of expressions. We require this message arguments
parameter to have two properties:

1. It must be able to store an arbitrary (but finite) number of message ar-
guments.

2. Each message argument may be of a different type, so the parameter which
stores the message arguments must be able to accommodate different types
of elements.

Lists with existential types

It is possible to use a normal Haskell list to represent the message arguments:
lists are designed to contain an arbitrary number of elements, after all! The
problem is that lists can only hold elements of the same type: e.g. the list
[6, ’ n ’] is ill-typed.

However, a Haskell 98 type extension known as existentially quantified data
constructors with type classes enables the construction of an existential type.
An existential type can hold any arbitrary data type, which may optionally be
contained by a type class. Listing 4.7 shows how they can be used to implement
a list which stores different types of message arguments.

Listing 4.7: Using existential types for an argument list

data OneArgument = forall a. Argument a ⇒ AnArgument a

−− how to use the data type as an argument list
arguments :: [OneArgument]
arguments = [AnArgument 6, AnArgument ’n’]

While this technique enables the use of lists to encapsulate message argu-
ments, it has two disadvantages:

1. It is not standard Haskell 98. While many Haskell environments support
existential data types (including the Glasgow Haskell Compiler, HUGS,
and the Chalmers Haskell Compiler/hbc), it is preferable to use standard
Haskell 98 constructs where possible.

2. It requires prefixing the data type constructor to every argument in the
list, which is hardly convenient. As demonstrated by Listing 4.8, even

4.2 Creating a friendlier mailperson 36

if the data constructor in Listing 4.7 was shortened from AnArgument to
simply A, using the sendMessage function would continue to be neither
convenient nor elegant.

Listing 4.8: Using sendMessage with a list of existential types

sendMessage aReceiver ”aMethod” [A 6, A ’n’]

The inconvenience of the need to tag each argument with a data construc-
tor is indeed a shame; otherwise, existential types would be a perfect way of
marshalling arguments.

A sendMessage template

Another solution to enable calling sendMessage with multiple messages argu-
ments simply bypasses the need to have a single parameter which contains the
message arguments. With Template Haskell, one can create a template for
the sendMessage function call, which, at compile-time, is evaluated to produce
functions that have the correct number of message arguments for each partic-
ular message. As an example of how this works, the original Template Haskell
paper [8] implements the C printf function—which uses a variable number of
arguments—in Haskell; the usage of printf and an analogous sendMessage func-
tion is shown in Listing 4.9.

Listing 4.9: Using Template Haskell versions of printf and sendMessage

−− the $(. . .) syntax ‘ splices ’ in a definition of a template,
−− which produces a specific instance of the function as appropriate

main = do
$(printf ”A string %s, a character %c and a number %d\n”)

”Foo” ’c’ 69
$(printf ”Only the number %d\n”) 69
−− a possible analogous version of sendMessage
$(sendMessage aReceiver aMethod) ”Foo” ’c’ 69 −− 3 arguments
$(sendMessage anotherReceiver anotherMethod) 69 −− 1 argument

The trick to implementing printf is that the template function for printf is
called with a format string, which explicitly tells printf how many arguments
follow the splice: in the first use of printf in Listing 4.9, the format string
contains three conversion specifiers: %s, %c and %d, so printf knows that there
are three arguments following the splice.

This has implications for a how to implement a template version of sendMes-
sage: the sendMessage template must know exactly how many arguments the
message requires. There are two approaches that can be taken to give sendMes-
sage this knowledge:

1. sendMessage determines the number of messages directly from the method
name or the combination of the receiving object and method name: this

4.2 Creating a friendlier mailperson 37

is possible in some component systems. Objective-C, for example, has
method names such as initWithScheme:host:path:; the number of argu-
ments that each method requires is determined exactly by the number
of colons (:) in the method name. Still, this may not be true of every
component system, so this approach is not universal.

Note that building a lookup table which yields the number of arguments
required, given a method name, does not solve the problem, since it would
not be possible to send message expressions for method names which are
unknown at compile-time; this is a legitimate and often mandatory re-
quirement if the component system is dynamic.

2. Each sendMessage function call would have to be explicitly annotated with
the number of arguments that the method requires; e.g. $(sendMessage
aReceiver aMethod 3)”Foo” ’c’ 69 . While this solution works, it is clearly
an inconvenience for the Haskell programmer, and is also inelegant—it is
preferable for sendMessage to automatically infer the number of arguments
needed for the message.

So, while it is possible to use Template Haskell to enabling building a
sendMessage command that accepts a truly variable numbers of arguments, it
will either not work for all component systems, or the programmer must explic-
itly specify how many arguments are used. Another solution will have to be
found.

Using tuples for message arguments

The humble tuple is normally used to group together related items, such as the
common (Key, Value) tuple used for lookup tables. Recall that the ‘message
arguments’ parameter passed to sendMessage must have two properties: it must
support encapsulating an arbitrary number of elements, and it must support
message arguments of different types. Tuples have both these properties: they
can be of any length (although usually the Haskell compiler imposes a limit on
the maximum number of elements, such as 64), and they may contain elements
of different types.

The problem is writing a function which allows an arbitrary-length tuple:
what would be its type signature? A type signature of :: (a , b , c) is perfectly
acceptable; this allows a three-element tuple where each element may be of a
different type. However, it is impossible to give a type signature to a function
which requires a tuple parameter of different lengths.

The trick is to not use tuples in the type signature at all. Tuples are still
used to ‘wrap’ all the message arguments in a single parameter; they just don’t
appear in the type signature. Instead, a type variable is used to represent the
parameter where the tuple would normally be; the type variable can then accept
any type of parameter, including tuples of varying length. Listing 4.10 shows
how such a type variable may be used.

Listing 4.10: sendMessage type signature with an arbitrary parameter

sendMessage :: Receiver → MethodName → a → −− etc . . .

4.2 Creating a friendlier mailperson 38

There is one show-stopper problem with this, though: since the ‘message
arguments’ parameter given to sendMessage can be of any type, one cannot do
anything useful with that type—other than pass the parameter on to another
function—since it is impossible to know what operations can be performed on
it. In particular, it is not possible to pattern match against the tuple to extract
the elements from it, since it is not even known whether the argument passed
to the function is, in fact, a tuple at all!

The goal, then, is to allow sendMessage to accept a parameter with any
particular type, except that the parameter passed to it needs to have certain
properties: in this case, it should have the property of being a tuple, so that
its elements can be extracted, and setArgument can be called on each of them.
This requirement of a type possessing certain properties is exactly what type
variable constraints and type classes are designed for; we therefore define an
Arguments type class1 in Listing 4.11 which contains functions that allows for
the extraction of the tuple’s elements.

Listing 4.11: The Arguments type class

class Arguments args where
arguments :: args → Int
elem1 :: Argument a ⇒ args → a −− extract first element
elem1 t = error ”Attempted to extract 1st element from length ”

++ show (arguments args) ++ ” tuple” −− default method
elem2 :: Argument a ⇒ args → a −− extract second element
elem1 t = error ”Attempted to extract 2nd element from length ”

++ show (arguments args) ++ ” tuple”
. . .
elem63 :: Argument a ⇒ args → a −− as many as is needed

instance Arguments () where
arguments = 0

instance Arguments (a) where
arguments = 1
elem1 a = a −− or ‘elem1 = id’

instance Arguments (a, b) where
arguments = 2
elem1 (a , b) = a
elem2 (a , b) = b

−− repeat for ≥ 2 arguments

This method of using a type class to represent and extract information from
a tuple was inspired by, and is nearly the approach which Lambada [2] uses
in its GoesToJava type class, to marshal multiple arguments for a Java method
invocation. However, Lambada’s GoesToJava type class abstracts away the need
to extract each message argument from the tuple: instead, it defines a function
marshal which extracts the elements from the tuple and calls the equivalent of
setArgument itself.

1Note the s on the end of Arguments; this is a different type class to Argument which was
defined in Listing 4.6 (page 34).

4.2 Creating a friendlier mailperson 39

This approach used by Lambada is superior, not only because it allows the
type class to be written with less code, but it also abstracts away the data
type entirely: as long as the data type implements the marshal function, it does
not matter what data type is used to store the message arguments. Thus, the
Arguments type class can be re-implemented more succinctly as shown in Listing
4.12; our equivalent to Lambada’s marshal function is named setArguments.

Listing 4.12: The Arguments type class, redux

class Arguments args where
setArguments :: MessageExpression → args → IO ()
setArguments = setArgument 1

−− ‘tuples’ with only one element (not really a tuple)
instance Arguments Char where setArguments = setArgument 1
instance Arguments Int where setArguments = setArgument 1
instance Arguments CString where setArguments = setArgument 1
−− etc . . .

−− tuples ≥ 1 argument
instance (Argument a, Argument b) ⇒ Arguments (a, b)

where
setArguments expr (a , b) = do

setArgument 1 expr a
setArgument 2 expr b

instance (Argument a, Argument b, Argument c) ⇒ Arguments (a, b, c)
where

setArguments expr (a , b) = do
setArgument 1 expr a
setArgument 2 expr b
setArgument 3 expr c

−− etc . . .

−− we can even use existential types to store message arguments,
−− if we want to prove that the Arguments type class can abstract
−− over the data type:
data ExistentialArgument = forall a . Argument a ⇒ A a
instance Arguments [ExistentialArgument] where

setArguments args =
mapM (λ(i, a) → setArgument i expr a) argsWithIndices

where
argsWithIndices = zip [1..] args

Now that an Arguments type class has been defined, it is possible to pass
arbitrary message arguments to the sendMessage function; after creating a new
message expression using the C proxy function makeMessageExpression defined in
Listing 4.2 (page 31), sendMessage merely has to call the setArguments function
to set the arguments in the built message expression.

4.2 Creating a friendlier mailperson 40

4.2.3 Overloading the message reply type

Now that sendMessage is capable of being called directly with a variable num-
ber of message arguments, the last step in implementing the ideal version of
sendMessage is to make it automatically determine the type of the message re-
ply, and invoke the appropriate sendMessageExpressionWithxReply function from
Listing 4.4 (page 33).

Once again, Lambada [2] has a solution to this ad-hoc polymorphism in
the form of its ComesFromJava type class; our version is conceptually exactly
the same. We declare a new type class named MessageReply, and require any
instances of the type class to implement a type-specific version of a generalised
sendMessageExpression function, as shown in Listing 4.13.

Listing 4.13: The sendMessageExpression implementation using a MessageReply
type class

class MessageReply r where
sendMessageExpression :: MessageExpression → IO r

instance MessageReply () where
sendMessageExpression = sendMessageExpressionWithNoReply

instance MessageReply Int where
sendMessageExpression = sendMessageExpressionWithIntReply

instance MessageReply CString where
sendMessageExpression = sendMessageExpressionWithCStringReply

−− etc . . .

4.2.4 Implementing and using sendMessage

Finally, it is possible to implement sendMessage by building on all the tech-
niques introduced in this section: Listing 4.14 contains the full implementation
of sendMessage. Thanks to liberal use of type classes to perform ad-hoc polymor-
phism, its implementation is (perhaps surprisingly) short and straightforward—
especially considering how many lines of code that the function saves from writ-
ing, compared to using the low-level interface to send messages.

There are two caveats to the final implementation and usage of sendMessage
as shown in Listings 4.14 and 4.15, compared to our ‘ideal’ version in Listing
4.5 (page 34):

1. The ideal version of sendMessage allows for a truly variable number of
parameters: one function parameter per message argument. Our concrete
implementation of sendMessage requires bundling up all the message ar-
guments into one parameter.

2. Since sendMessages final type is a (constrained) type variable, we must
fix the type variable by giving sendMessage an explicit type signature
whenever it is used; see Listing 4.15 for an example.

4.2 Creating a friendlier mailperson 41

Listing 4.14: The sendMessage implementation

sendMessage :: (Arguments args, MessageReply r) ⇒
Receiver → MethodName → args → IO r

sendMessage receiver methodName arguments = do
e ← makeMessageExpression
setReceiver e receiver
setMethodName e methodName
setArguments e arguments
r ← sendMessageExpression e
return r

−− pure version of sendMessage (useful for e.g . numeric libraries
−− which are available as objects/components)
sendMessageP :: (Arguments args, MessageReply r) ⇒

Receiver → MethodName → args → r
sendMessageP receiver methodName arguments =

unsafePerformIO (sendMessage receiver methodName arguments)

Listing 4.15: Using sendMessage

−− assume that we have the following components declared
numericLibraryComponent :: UniversalObject
networkComponent :: UniversalObject

main = do
let eighteen = sendMessageP numericLibraryComponent

”multiply” (3, 6) :: Int
fileDescriptor ← sendMessage networkComponent

”openSocket” (”localhost”, 6667) :: IO CInt
sendMessage networkComponent

”writeString ” (fileDescriptor ,
”USER foo localhost localhost : Haskell”) :: IO ()

4.3 Direct Messaging: Statically type-checked message sending 42

Even with these caveats, sendMessage is reasonably convenient to use. It
allows sending any arbitrary message to any component, and can receive a reply
of any type: it is thus completely dynamic in nature.

4.3 Direct Messaging: Statically type-checked
message sending

Recall the definition of sendMessage in Listing 4.14 (page 41). While this def-
inition of sendMessage is dynamic enough to allow for any type of message to
be sent to any receiving object and receive any type of message reply, this dy-
namism is also a weakness. In a sense, it is too dynamic for most purposes: the
type system can only assume that the final type for the sendMessage function
will be some type r, where r could be any type which belongs to the type class
MessageReply. This has the unpleasant side-effect that whenever the sendMes-
sage function is called, the type system must be told explicitly what the reply
type will be (i.e. the resulting type variable must be fixed), otherwise the type
of sendMessage will be indeterminate.

It is also necessary to explicitly upcast the receiving object to the Univer-
salObject type, so that the sendMessage expression will be well-typed. This
inconvenience is due to a requirement for a messaging function which can com-
municate with any object: message sending can only work if the receiving object
is the UniversalObject type, so an explicit upcast is mandatory somewhere before
sendMessage calls the C proxy function to perform the message sending.

A similar problem is that any objects in the argument list must also be upcast
to the UniversalObject type when using sendMessage. Moreover, if the message
reply is then an object and its type is known at compile-time to be a subtype of
UniversalObject, an explicit downcast must be performed on the message reply
to its known subtype.

As a example, let us examine a typical hashtable container object, which
stores an object (a value) of type SomeValue, which can be retrieved from the
hashtable by using another object as a lookup parameter (the key). Com-
pare and contrast the Java (Listing 4.16) and Haskell (Listing 4.17) versions of
putting an object anto the hashtable and retrieving it.

Listing 4.16: Hashtable object manipulation in Java

aHashtable.put (aKey, aValue);
SomeValue theRetrievedValue = (SomeValue) aHashtable.get (aKey);

It is clear that the Haskell version does not meet the two goals of allowing
elegant and convenient communication with components. Ideally, the Haskell
code to perform message sending should be as succinct as possible, so that
instead of the tedious usage of sendMessage demonstrated by Listing 4.17 (page
43), its usage would look more like the code in Listing 4.18, which is how one
would expect to use those functions if there was a Haskell Hashtable module
which made them available.

The goal is therefore to have functions which automatically perform any
typecasting and type fixing necessary to send a message, so that the program-

4.4 Implementing Direct Messaging 43

Listing 4.17: Hashtable object manipulation in Haskell using sendMessage—the
code looks far more verbose than Java!

sendMessage (upcast aHashtable :: UniversalObject) ”put”
(upcast aKey :: UniversalObject ,
upcast aValue :: UniversalObject) :: IO ()

valueUniversalObject ← sendMessage
(upcast aHashtable :: UniversalObject)
”get” (upcast aKey :: UniversalObject) :: IO UniversalObject

let theRetrievedValue = downcast valueUniversalObject :: IO
SomeValue

Listing 4.18: Convenient hashtable component communication in Haskell

put aHashtable (aKey, aValue)
theRetrievedValue ← get aHashtable aKey

mer does not have to explicitly perform those tasks. To implement these func-
tions, the dynamic sendMessage function can have its dynamism constrained
by wrapper functions such as put and get, when there is knowledge of all the
message expression’s types at compile-time. Let us call these static wrapper
functions direct messaging functions.

4.4 Implementing Direct Messaging

The interface and implementation of the direct messaging functions has four
requirements:

1. Their usage must be simple and concise, so that they can be used in a
manner similar to Listing 4.18.

2. Both the type checker and type inference engine must be able to act on all
expressions involving direct messaging; i.e. allowing ill-typed expressions
or introducing inconsistencies in the type system is not permissible.

3. Whatever scheme is used to implement the direct messaging functions
must be reasonably lightweight, so that it is feasible to construct and use
thousands of these functions without substantial overhead.

4. It must be possible to automatically construct every direct messaging func-
tion using an interface generator such as C→Haskell or Template Haskell;
it would be senseless to automatically map an entire object-oriented class
hierarchy onto Haskell, only to require manual intervention from the pro-
grammer when constructing direct messaging functions.

Listing 4.19 shows a first attempt at writing the put and get functions.
There are a number of similarities which can be observed in the structure of the
functions:

4.4 Implementing Direct Messaging 44

Listing 4.19: Implementing the put and get functions

put :: Instance object
⇒ HashtableObject −− hashtable
→ (object , object) −− key, value
→ IO ()

put hashtable (key , value) =
sendMessage (upcast hashtable :: UniversalObject) ”put”

(upcast key :: UniversalObject ,
upcast value :: UniversalObject)

get :: Instance object
⇒ HashtableObject −− hashtable
→ object −− key
→ IO UniversalObject −− returned value

get hashtable key =
sendMessage (upcast hashtable :: UniversalObject) ”get”

(upcast key :: UniversalObject)

1. They are both simple wrapper functions around sendMessage; their only
task is to call sendMessage.

2. Both functions upcast the receiving object and all objects in the argument
list to the UniversalObject type.

3. Both functions, like sendMessage, accept three parameters.

4. Even though sendMessage has a type variable for its result type, the
sendMessage expression here does not need to be given an explicit type
signature when it is called. The type signatures given for the put and
get functions are used by the type system to fix sendMessage’s free type
variable.

Automatically upcasting objects in the argument list

Enabling an object to be sent in the argument list—without explicit upcasting—
can be performed by simply making the relevant object data type (HashtableObject,
in this example) instances of the Argument type class described in Listing 4.6
(page 34).

A lightweight way of doing this for many objects is by declaring a new
type class named ObjectArgument, which all objects in the class hierarchy are
instances of. ObjectArgument implements a default function for the type class
named setObjectArgument, which can then be called by the objects when they
are required to implement the setArgument function. Listing 4.20 shows the
relevant code to do this.

Generalising put and get

There is one major problem with put and get: they only work with a receiv-
ing object type of HashtableObject. What if another object-oriented class, e.g.

4.4 Implementing Direct Messaging 45

Listing 4.20: The ObjectArgument type class

class Object arg ⇒ ObjectArgument arg where
setObjectArgument :: Int → MessageExpression → arg → IO ()
setObjectArgument index expr arg = setUniversalObjectArgument

index expr (upcast arg :: UniversalObject)

instance ObjectArgument HashtableObject
instance Argument HashtableObject where

setArgument = setObjectArgument

instance ObjectArgument FiniteMapObject
instance Argument FiniteMapObject where

setArgument = setObjectArgument

FiniteMap, also provided put and get functions? In an object-oriented language,
each class has a separate name space for method names. By writing o.m();, the
method name m is chosen from within o’s method namespace. Haskell does not
have namespace separation between objects, so such a method invocation would
be written as m o instead.

Moreover, it is possible to have two classes Foo and Bar, which both con-
tain a method named overloadedMethod—and not only can overloadedMethod
be overloaded within the class so that it can be called with different types of
arguments, but the two classes may contain completely different return types for
overloadedMethod! Listing 4.21 shows an example of this. If overloadedMethod
is made available in Haskell to act as a convenient wrapper for sendMessage,
what would its type signature be?

Listing 4.21: overloadedMethod in Java

class Foo
{

// overloaded methods in Java must still have the same
// return type
int overloadedMethod (Object o, char c) { . . . }
int overloadedMethod (float f) { . . . }

}

class Bar
{

void overloadedMethod (int i) { . . . }
void overloadedMethod () { . . . }

}

4.4 Implementing Direct Messaging 46

Resolving overloading

In fact, there is already a solution to this problem. sendMessage’s purpose is
to send a message to any receiving object, with an arbitrary argument list, and
receive with any message reply type. So, writing an overloadedMethod function
is a simple exercise of wrapping sendMessage, as shown in Listing 4.22.

Listing 4.22: Implementing overloadedMethod in Haskell

overloadedMethod ::
(Object receiver , Arguments args, MessageReply reply)
⇒ receiver → args → reply

overloadedMethod receiver args reply = sendMessage
receiver ”overloadedMethod” args

−− usage (assume Foo and Bar are instances of the
−− appropriate type classes)
data Foo
data Bar

usage = do
−− note that we must fix the return type of overloadedMethod,
−− since its result type is a type variable
i ← overloadedMethod Foo (anObject, ’c’) :: IO Int
i ’ ← overloadedMethod Foo (2.69 :: Float) :: IO Int
overloadedMethod Bar (4 :: Int) :: IO ()
overloadedMethod Bar () :: IO ()

Now that implementing a function such as overloadedMethod is possible in
Haskell, let us once again address the two functions put and get. It is possible
to implement put and get similarly to overloadedMethod, but if that is done, put
and get will have the same freedom as overloadedMethod. What is required is
a way to constrain the type variables which put and get can operate with. The
type checker should produce an error if put and get are used with an combination
of types which have not been specifically permitted.

put and get’s types can be constrained by using a multi-parameter type class,
where one parameter is used for each type variable that needs to be constrained.
put, get, and any other method invocation have three parameters which need
to be constrained: the receiving object, the types of the argument list, and the
reply type.

Additionally, the type system must be told that the reply type is uniquely
determined from the receiving object, otherwise it will not be able to properly
fix the result type of the put and get functions. This can be done by using
a Haskell 98 type extension known as functional dependencies. Listing 4.23
shows an implementation of put and get, using multi-parameter type classes
with functional dependencies to constrain the types that can be used with the
two functions.

4.4 Implementing Direct Messaging 47

Listing 4.23: put and get, allowed only to operate on Hashtable and FiniteMap
receiving objects

class (Object receiver , Arguments args, MessageReply reply) ⇒
Put receiver args reply
−− the reply type is uniquely determined by the receiving
−− object
| receiver → reply

put :: (Put receiver args reply) ⇒ receiver → args → reply
put = sendMessage (upcast receiver :: UniversalObject) ”put” args

class (Object receiver , Arguments args, MessageReply reply) ⇒
Get receiver args reply | receiver → reply

get :: (Get receiver args reply) ⇒ receiver → args → reply
get = sendMessage (upcast receiver :: UniversalObject) ”get” args

−− specifying which types can be used with put and get
instance Put HashtableObject (UniversalObject , UniversalObject) ()
instance Get HashtableObject (UniversalObject) UniversalObject

instance Put FiniteMapObject (UniversalObject , UniversalObject) ()
instance Get FiniteMapObject (UniversalObject) UniversalObject

−− the type checker will disallow the following instance declaration ,
−− since otherwise the reply type cannot be uniquely determined
−− from the receiving object . this is similar to declaring two
−− methods with the signatures ”void foo() ;” and ”int foo() ;” in
−− the same class in Java.
−−
−− instance Put HashtableObject (UniversalObject , UniversalObject) Int

4.4 Implementing Direct Messaging 48

The DirectMessage type class

Listing 4.23 shows many similarities between the Put and Get type classes. The
only difference between them is that the Put type class is used to constrain the
type variables of the put function, and the Get type class constrains the type
variables of the get function.

It is possible to eliminate this requirement of one type class per function
by introducing a DirectMessage type class which also includes the method name
as an additional phantom parameter, and declaring a unique method data type
for each method name. Each instance of DirectMessage uses the method data
type in its instance declaration, and each direct messaging function fixes the
phantom parameter using the method data type. Listing 4.24 shows how put
and get can be implemented using the DirectMessage type class.

Listing 4.24: put and get implemented with the DirectMessage type class

class (Object receiver , Arguments args, MessageReply reply) ⇒
DirectMessage receiver methodName args reply
−− the reply type is uniquely determined by the receiving
−− object and the method name.
| receiver methodName → reply

−− any definition for the method data type is okay; it only
−− matters that the method data type is unique per method name
data MethodName put
put :: (DirectMessage receiver MethodName put args reply) ⇒

receiver → args → reply
put = sendMessage (upcast receiver :: UniversalObject) ”put” args

data MethodName get
get :: (DirectMessage receiver MethodName get args reply) ⇒

receiver → args → reply
get = sendMessage (upcast receiver :: UniversalObject) ”get” args

−− specifying which types can be used with put and get
instance DirectMessage HashtableObject MethodName put

(UniversalObject , UniversalObject) ()
instance DirectMessage HashtableObject MethodName get

(UniversalObject) UniversalObject

instance DirectMessage FiniteMapObject MethodName put
(UniversalObject , UniversalObject) ()

instance DirectMessage FiniteMapObject MethodName get
(UniversalObject) UniversalObject

This design of using a DirectMessage type class is lightweight enough to be
used with thousands of direct messaging functions. Another desirable property
of this design is that an automated interface generator will find it trivial to
generate the permitted declarations.

4.5 Transparent marshalling 49

One interesting point about the DirectMessage class is that is in fact allows
for greater flexibility in overloading than what would be possible in most object-
oriented languages such as Java and C++. If the functional dependency for
DirectMessage is modified to receiver methodName args → reply, this enables
multiple method definitions in the same class which can have different result
types depending on the arguments. This is not possible in Java or C++; writing
interface Foo { void aMethod(); int aMethod(int i) ; } in Java would result in
a compile-time error.

4.5 Transparent marshalling

The Argument and MessageReply type classes enable more than just determining
which data types can be sent and retrieved from the component system. They
can perform transparent marshalling. For example, Listing 4.25 shows how the
Haskell String type can be transparently marshalled to and from a StringObject
before a message is sent or a message reply is retrieved from the component
system.

Listing 4.25: Transparent String ↔ StringObject marshalling

instance Argument String where
setArgument expr index arg = do
−− create the string object (by using the direct
−− messaging function named ”new”)
stringObject ← new StringObject arg
setArgument expr index stringObject
where

StringObject = getClassObject
:: StringObjectClassObject

instance MessageReply String where
sendMessageExpression receiver methodName args = do

o ← sendMessageExpressionWithUniversalObjectReply
receiver methodName args

let stringObject = downcast o :: StringObject
−− get the string inside the string object as a C string
cString ← getCString stringObject
−− return the CString
peekCString cString

4.6 Monadic binding and object-oriented syntax

For clarity, the sendMessage function has demonstrated so far with the receiving
object as the first parameter in the argument list. However, it is more advanta-
geous to placing the receiving object last in the argument list, because then it is
possible to create a new # function which allows writing object # method rather
than method object. This more closely resembles object-oriented notation.

4.7 Receiving messages 50

It is also possible to use the monadic bind operator (>>=) to permit build-
ing message chains, where the result of one message expression is used as the
last parameter to a following message expression. Listing 4.26 shows the imple-
mentation of the # function, and Listing 4.27 demonstrates how using # and
>>= can lead to compact, object-oriented like code.

Listing 4.26: Implementation of the # function

(#) :: object → (object → reply) → reply
object # method = method object

4.7 Receiving messages

For Haskell to act as a first-class citizen in a component system, it must be able
to function as a component, and receive and reply to messages as well as send
them.

There are two approaches which enable Haskell expressions to be represented
as a component. These parallel the two approaches described in Section 3.4
(page 25):

1. The component is represented in Haskell as a data type which is com-
pletely compatible with and indistinguishable from any other component:
a Haskell expression is a component.

2. A surrogate component is written in the proxy language, which is capable
of forwarding messages and queries received from component system to
the Haskell environment.

It is recommended, wherever possible, to use a surrogate component instead
of representing the component natively in Haskell, and to perform the actions
required to create a component in the proxy language rather than Haskell. The
reasons for this recommendation are the same as the reasons for representing
foreign components in Haskell: greater encapsulation and decreased marshalling
code.

The interface required of a component and the process of creating and regis-
tering a component with the component system are completely dependent on the
component system being used. Even so, it is possible to propose some universal
guidelines which are independent of the component system:

1. The code to handle incoming messages should be written in the surrogate
component where possible. This decreases the amount of marshalling code
which has to be written.

2. There should be a restricted number of entry points into the Haskell en-
vironment. Again, this decreases the amount of marshalling code which
has to be written.

3. It may be possible for the surrogate component to marshal all incoming
messages as objects. If this is done, the communications functions de-
fined previously in this chapter can be used to retrieve information from

4.7 Receiving messages 51

Listing 4.27: Using # and >>= for succinct code

−− exactly the same implementation of sendMessage shown
−− previously, except that the receiving object is placed
−− as the last parameter instead of the first parameter
sendMessage :: (Arguments args, MessageReply r) ⇒

MethodName → args → Receiver → IO r

−− assume that the following methods exist , implemented
−− via direct messaging functions which wrap around
−− sendMessage. like sendMessage, the receiver in all these
−− functions is also the last parameter.

−− creates a new instance object from a given class object ;
−− may return a different type of instance object depending
−− on the type of the class object
new :: (Arguments a, ClassObject c , Instance i) ⇒ a → c → i
−− retrieves the data at a particular URL
fetch :: Arguments a ⇒ a → URLObject → DataObject
−− returns the information in the data object as a StringObject ,
−− which is automatically marshalled to a String
getContents :: Arguments a ⇒ a → DataObject → String

−− implementation of a www client in Haskell , using
−− a component system’s URL library
main :: IO ()
main = do

args ← System.getArgs
−− create a URL from argv[0]. transparent marshalling
−− is performed, to marshal the given String to the
−− component system’s StringObject type
url ← URLObject # new (head args)
−− fetch the URL and retrieve its contents as a String ,
−− again using transparent marshalling to convert the
−− resulting
webpageContents ← url # fetch () À= getContents ()
−− display webpage contents to stdout
putrStrLn webpageContents
where

URLObject = getClassObject :: URLClassObject

4.7 Receiving messages 52

the message, and there only needs to be a single point of entry into the
Haskell environment, which is passed the concretised message object as a
parameter. One can define a new MessageExpressionObject specifically for
this purpose.

4. Depending on the component system’s capabilities, it may be possible
to provide a single surrogate object which can masquerade as any ob-
ject or class in the component system. The Haskell environment can call
functions in the surrogate component to instruct it to act as a particular
object in the component system’s class hierarchy. Effectively, the surro-
gate functions as a factory object, and the Haskell environment can create
specific instances of the surrogate which gives it the capabilities to act as
a particular component.

If it is possible to use the surrogate component as a factory object, this
eliminates the need to write different code for each surrogate component.
By using the FFI foreign import ccall ”wrapper” declaration2, it is possi-
ble to provide a pointer to a Haskell function, which each instantiation
produced by the surrogate factory object can use to call the Haskell envi-
ronment.

5. A component written in Haskell requires some way to maintain the state
of its instance variables. This can be done in one of two ways:

(a) An object specifically created for the purpose of storing instance vari-
ables can be created. This instance variables object can provide the
traditional get and set methods, parameterised by a String to indi-
cate which variable to operate on. Listing 4.28 shows how a Haskell
component may be written using an instance variables object.
This approach of storing instance variables is therefore capable of
storing any Haskell data type which is marshallable to the compo-
nent system via the Argument type class. While this makes access-
ing instance variables slightly inconvenient, helper functions can be
implemented in a similar fashion to the Arguments type class, to per-
form setting and retrieving on multiple instance variables. Note that
the surrogate component can act as a factory object for the instance
variables object.

(b) Use the fearsome unsafePerformIO (newIORef x) technique [11] to en-
able mutable, top-level (global) variables in Haskell. The use of this
technique is neither advocated or disapproved of by this thesis, and
there is much debate in the Haskell community [13] about properties
of its usage.

2A deprecated form of this declaration is foreign export ”dynamic”.

4.7 Receiving messages 53

Listing 4.28: A Haskell component which uses an instance variables object

−− convenience functions to access instance variables .
−− these declarations could be automatically generated via
−− Template Haskell.
getCounter = getInstanceVariable ”counter”
setCounter i = setInstanceVariable (”counter”, i)

incomingMessage ::
MessageExpressionObject → InstanceVariablesObject → IO ()

incomingMessage messageExpression instanceVariables
−− initialisation function called by the surrogate component
| messageRequest == ”initialise” = −− or ” initialize ” . . .

instanceVariables # setCounter 42
−− masquerade as a ”Counter” object, which only inherits from
−− the root of the class hierarchy
| messageRequest == ”class” =

messageExpression # setReply ”Counter”
| messageRequest == ”superclass” =

messageExpression # setReply ”Object”
−− methods to increment and decrement the counter
| messageRequest == ”increment” = do

i ← instanceVariables # getCounter
instanceVariables # setCounter (i + 1)

| messageRequest == ”decrement” = do
i ← instanceVariables # getCounter
instanceVariables # setCounter (i − 1)

−− returning the current state of the counter
| messageRequest == ”getCounter” = do

i ← instanceVariables # getCounter
−− the surrogate component can read the value
−− set in the MessageExpressionObject by the Haskell
−− environment, and return that value to the component
−− system. note that the setReply function is overloaded.
messageExpression # setReply i

where
messageRequest = messageExpression # getMessageRequest

−− :: String

Chapter 5

Exception Marshalling

Exceptions are special, pre-defined events which can change a program’s exe-
cution path. A division by zero is an example of an exception. It is possible
that sending a message to a component can result in an exception being thrown
(or raised) by the component system. The thrown exception should then be
marshalled to Haskell, so that the Haskell environment can catch the exception
and take an appropriate action.

How an exception is thrown and caught and how it is represented varies
greatly from one component system to the next. As such, it is the responsibility
of the communications functions in the proxy language to correctly catch any
exceptions, and marshal it in a form which Haskell can interpret.

To marshal the exception to the Haskell environment, the duty of invoking
a message expression is split into two functions:

1. The sendMessageExpression function shown in Listing 4.13 (page 40) is
modified so that it sends the message but does not return a reply value.
It instead returns an exception object if an exception was thrown, or a
nullPtr if no exception was thrown.

2. A new function named getMessageExpressionReply is defined, to retrieve
the message reply from the result of the message expression.

Listing 5.1 demonstrates the changes which can be made to the appropriate
communications functions and type classes. For comparison, the original im-
plementation of the sendMessage function was introduced in Listing 4.14 (page
41).

55

Listing 5.1: An implementation of sendMessage which marshals exceptions

class MessageReply r where
getMessageExpressionReply :: MessageExpression → IO r

instance MessageReply () where
getMessageExpressionReply = return ()

instance MessageReply Int where
getMessageExpressionReply = getMessageExpressionIntReply

−− etc . . .

foreign import ccall
getMessageExpressionIntReply :: MessageExpression → Int

−− etc . . .

foreign import ccall
sendMessageExpression :: MessageExpression → IO UniversalObject

sendMessage :: (Arguments args, MessageReply r) ⇒
Receiver → MethodName → args → IO r

sendMessage receiver methodName arguments = do
e ← makeMessageExpression
setReceiver e receiver
setMethodName e methodName
setArguments e arguments
−− see section 5.10 in the FFI addendum for details
−− on throwIf
throwIf

(6= nullPtr)
(show) −− replace with appropriate marshalling code
(sendMessageExpression e)

r ← getMessageExpressionReply e
return r

Chapter 6

Memory Management

Haskell features automatic memory management using a garbage collector, which
is aware of whether any components or objects are no longer being used by the
Haskell environment. The FFI provides a specialised data type to represent
objects outside of the Haskell context called a ForeignPtr, to which finalizers
may be attached. Finalizers are functions which are called when the garbage
collector detects that an object is no longer being referenced by the Haskell
system.

If a component system uses a reference counting scheme to perform mem-
ory management, ForeignPtrs are a simple way to enable the Haskell system to
decrease the reference count of a component when its garbage collector detects
it is not being used any more. In the event that a new object enters the Haskell
environment, two steps should be taken. Firstly, its reference count should be
increased if this has not already been done by the component system. Sec-
ondly, the FFI function newForeignPtr should be called to attach a finalizer to
the pointer and create the foreign pointer. The finalizer simply decreases the
reference count of the object. If ForeignPtrs are used, the sendMessage func-
tion must also be modified so that it can act on the ForeignPtr type; it can
use an FFI function such as withForeignPtr to obtain the Ptr and pass it to the
communications functions in the proxy language.

One problem with this scheme is that not every type of object may require
manipulation of a reference count. In particular, class objects provided by the
component system are typically present throughout the lifetime of the system,
and do not have reference counters associated with them. This poses a problem
for the class hierarchy tree. The UniversalObject type is required to be a For-
eignPtr, so that any new, unknown objects which enter the Haskell environment
can have their reference counts properly decreased when they no longer being
used. However, if class objects are simply Ptr types instead of ForeignPtr types,
then now there are two different types of pointers. In particular, if sendMessage
now only works with ForeignPtrs, how is it possible to communicate with class
objects? Here are three possible solutions to this problem:

1. Two types of sendMessage functions can be created: one to send messages
to objects represented as ForeignPtrs, and one to send messages to Ptrs.
The sendMessage function which operates on ForeignPtrs can easily be

57

Figure 6.1: A class hierarchy which supports both ForeignPtr and Ptr data
types. Shapes with solid outlines represent data types, and shapes with dashed
outlines represent type classes. Rectangles indicate data types which are wrap-
pers around Ptrs, and ellipses represent data types which are wrappers around
ForeignPtrs.

implemented using the sendMessage function which operates on Ptrs1.

The class inheritance tree shown in Listing 3.4 (page 23) is modified to
include two types which may represent any object, as shown in Figure 6.1:
a UniversalObjectPtr type which is a Ptr, and a UniversalObject type which
is a ForeignPtr.

All class objects are upcast to the UniversalObjectPtr type before being
used with the version of sendMessage that operates on Ptrs. All other ob-
jects are upcast to the UniversalObject type, for use with the sendMessage
function that operates on ForeignPtrs.

Note that using this design means that there are now two data types which
can act as the root of the class hierarchy.

2. Any retrieved class objects are upcast to the UniversalObject type before
they are sent with sendMessage, and the casting functions perform the
task of converting them from a Ptr to a ForeignPtr in the process. The
casting functions attaches a dummy function as a finalizer, which simply
does nothing.

3. All retrieved class objects are treated as ForeignPtrs, with a dummy func-
tion attached to them as a finalizer.

Each choice has their own advantages and disadvantages, but the recom-
mend approach is to retrieve all class objects as ForeignPtrs and attach dummy
functions as their finalizers. This approach is preferred for two reasons:

1Note that when the Ptr is retrieved from the ForeignPtr to be sent, the garbage collector
may sense that was the last use of the of the ForeignPtr, and execute the attached finalizer
before the message is sent. To ensure that this never occurs, either the withForeignPtr or
touchForeignPtr functions should be used appropriately.

58

1. Using two sendMessage functions to handle Ptrs and ForeignPtrs requires
more than one data type to represent the root of the object-oriented class
hierarchy. This is both confusing for programmers and inelegant, since an
object-oriented class hierarchy should never have more than one object as
the root of a single inheritance tree. Additionally, there will be different
representations of objects in the Haskell environment, so not all objects
may be treated similarly by functions which operate on them.

2. Representing retrieved class objects as Ptrs and relying on the cast func-
tions to convert between the Ptr and a ForeignPtr requires the casting
functions to be written differently, depending on whether a class object or
an instance object is being typecast. Different representations of objects
are also used.

Chapter 7

MochΛ: Haskell & Cocoa

7.1 MochΛ

The ideas presented in this thesis have been used to implement a language bind-
ing between Haskell and Objective-C, named MochΛ. Objective-C uses a small
number of extensions to the C language to implement a highly dynamic and
reflective object-oriented programming language. It is used extensively in the
Mac OS X, NeXTStep and GNUstep environments, and features two frame-
works—Foundation and AppKit—which together allow for very rapid software
development. Cocoa is the name that Apple R© has given to the combination
of the Foundation and AppKit frameworks in association with several more
Objective-C classes specific to the Mac OS X platform.

7.1.1 The Cocoa classes

To model the class hierarchy, MochΛ generates four class hierarchy trees for the
Haskell programmer: one to represent instance objects, one for class objects,
one for meta-class objects, and one for Objective-C’s formal protocol objects1.
Class objects can be retrieved by prefixing and postfixing the class name with
an underscore, e.g. NSObject , and meta-class objects use two underscores,
e.g. NSObject . Formal protocol names are appended with Protocol, e.g.
the Cocoa NSCoding protocol is named NSCodingProtocol in MochΛ. Formal
protocol objects, if they are ever required, can be retrieved using the same
classname syntax, e.g. NSCodingProtocol .

Interface definitions are provided for the entire Cocoa framework, and on-
the-fly interface generation is provided via Template Haskell, so that user-
written Objective-C frameworks can easily be used when writing a Haskell
program. (The Template Haskell-based interface generator was also used to
generate the interface definitions for Cocoa.) Instantiating new objects is per-
formed by sending an alloc message to a class object, and sending an init message
to the resulting alloc’ed instance object. Explicit upcasting and downcasting of
objects is provided, so that objects retrieved from Cocoa container objects (such
as NSArray or NSDictionary) can be cast appropriately.

1A formal protocol is similar to a Java interface or a C++ pure virtual class. Formal
protocols enable objects to inherit multiple interface definitions, but not inherit multiple
implementation definitions.

7.1 MochΛ 60

7.1.2 Communication with Objective-C

MochΛ enables Haskell to send messages to Objective-C objects, and also en-
ables Objective-C objects to be written in Haskell. Sending messages from
Haskell to Objective-C uses the same techniques mentioned in this thesis, with
the exception that an additional type class has been used in MochΛ to integrate
Objective-C’s type encodings with the communications functions.

Objective-C method names are encoded in Haskell by lowercasing the first
letter and replacing any colons (:) in the method name with underscores,
omitting the last colon. For example, the NSURL class’ initialisation method
initWithScheme:host:path: is written as initWithScheme host path.

The abstract MessageExpression data type used in Chapter 4 is implemented
in MochΛ using the NSInvocation class, which exactly fulfils the properties re-
quired of a MessageExpression. MochΛ implements transparent marshalling be-
tween Haskell Strings and the Foundation framework’s NSString class, and pro-
vides direct messaging functions for the entire Cocoa framework.

MochΛ uses surrogate objects to forward messages from the runtime system
to the Haskell environment, and these surrogate objects are capable of mas-
querading as any type of object in Objective-C. As a result, it is possible for
the Haskell environment to respond to actions produced by a user in a GUI
interface, or even for Haskell code to function as a fully-fledged NSDocument or
NSWindow controller.

7.1.3 Building Cocoa applications

The ability of MochΛ to write Objective-C objects in Haskell enables building
complete GUI applications on Mac OS X. Moreover, MochΛ provides integration
with Apple’s Project Builder and Interface Builder programs, which together
comprise an integrated development environment (IDE) to build Cocoa applica-
tions. This integration enables a programmer to use Interface Builder to build a
GUI application’s interface, and use Project Builder to directly edit and compile
Haskell source code into a resulting application—all within the IDE. MochΛ is
currently only implemented on the Mac OS X platform, but it should be pos-
sible to port it to other Objective-C systems such as GNUstep without much
difficulty.

The homepage for MochΛ is at http://www.algorithm.com.au/mocha/.
In accordance with the Haskell and Apple open-source developer and research
communities, it has been provided under the liberal BSD license.

Chapter 8

Discussion & Conclusion

8.1 Summary of ideas

The ideas used in this thesis can be used to write a binding from Haskell to a
reflective object-oriented programming language or component system. A com-
plete communications framework has been given which allows low-level mes-
saging functions to be wrapped by elegant, more convenient higher-level direct
messaging functions.

It is possible to model component system’s object-oriented class hierarchy
by using the techniques discussed in this thesis. Objects can be representing
in an isomorphic Haskell class hierarchy, it is possible to upcast and downcast
objects in the class hierarchy, and class objects may be represented and used.
To access a particular component’s API, a novel approach of using Template
Haskell as an automatic interface generator has been proposed.

There were also approaches and solutions offered for other important prob-
lems, such as transparent type marshalling, enabling components to be writ-
ten in Haskell, exception marshalling and memory management. A Haskell to
Objective-C language binding, MochΛ, has been written, as a concretisation of
the ideas in this thesis. MochΛ enables a Haskell environment to both commu-
nicate with and act as Objective-C objects, and can be used to build full GUI
applications on Mac OS X.

8.2 Conclusion

MochΛ shows that Haskell has much to gain from interacting with object-
oriented languages and component systems, by enabling access to rich frame-
works and libraries which would otherwise not be available. As well as simply
enabling Haskell to interact with component systems, binding Haskell to these
systems also enables programmers that operate in these systems to now use
Haskell as an alternative programming language to write components.

8.3 Future Work 62

8.3 Future Work

Even though this thesis has proposed a practical, universal framework for Haskell
to interoperate with component systems, there are still a number of areas where
the interoperability may be improved.

• Some object-oriented programming languages use named parameters to
perform function calls or method invocations. For example, one would
write [url initWithScheme:”http” host :” localhost ” path:”/”] in Objective-
C to invoke the url object’s initWithScheme method, with the two named
parameters host and path1

It is currently unknown how to provide a convenient, elegant way for
Haskell to call functions which use named parameters, so this is an area for
future research. One promising option is a proposal for records in Haskell
[14], which would allow writing url # initWithScheme (”http”, { host = ”
localhost” , path = ”/”}) to mirror the Objective-C example given above.

• The syntax to declare a function which can operate on a particular class or
type class is slightly inconvenient, since a type variable must specifically
be mentioned. It would be preferable if one could write :: Object → . . .
instead of :: Object o ⇒ o → . . . for a type signature, by using the type
system to expand the first type signature to the second.

• It would be interesting to use a component system to enable Haskell com-
ponents to communicate with each other. Since component systems and
some object-oriented frameworks have features such as dynamic loading
and network transparency, Haskell could simply use the component sys-
tem’s architecture to allow interaction between different Haskell modules.
For example, using the component system’s dynamic loading facilities
would enable Haskell to load new components and data types at run-time,
and perhaps enable dynamic typing and binding for greater extensibility
of Haskell programs.

• When Haskell is used to write components, the two approaches proposed
in Section 4.7 (page 50) for storing instance variables seem ad-hoc and
inelegant. More research needs to be done on how Haskell components
can retain state between invocations of the component.

1This is not quite true—Objective-C does not, strictly speaking, have named parameters.
In this example, the method name is actually initWithScheme:host:path, and the parameters
for host and path are passed as normal positional parameters in an argument list. However,
it would still be useful if Haskell could emulate such syntactic sugar which appears much like
a function with named parameters.

Appendix A

An explanation of
getClassObject

The following is an explanation of how the getClassObject function, described
in Listing 3.11 (page 25), works:

1. classObjectName is called to determine the name of the desired class object.
classObjectName knows which name to return since the type of the entire
getClassObject expression is fixed at the point of the function call, by
writing getClassObject :: SubClassObject.

2. The name returned by classObjectName is passed to getClassObjectFrom-
Name, to obtain the class object for the given name. The x used as the
result of the function again fixes the result of getClassObjectFromName,
so it knows exactly the type of the class object to retrieve.

3. The upcast function is used to cast the result from a class object data
type to the ambiguous type variable c, defined in getClassObjects type
signature. The type system is able to disambiguate the type variable,
since the type of the entire expression has been fixed at the point of the
function call.

Listings

3.1 A superclass and subclass in Java 10
3.2 A superclass and subclass in Haskell, modelled with phantom types 11
3.3 Java class hierarchy with multiple inheritance 12
3.4 Phantom types augmented by type classes can model multiple inheritance 12
3.5 Using only type classes to model multiple inheritance 13
3.6 Implementing and using printf in Template Haskell 16
3.7 Up/downcasting functionality for the Super object-oriented class 20
3.8 Using fromSuperInstance and toSuperInstance to perform casting . 20
3.9 The downcast and upcast functions 21
3.10 Modelling a class hierarchy which includes class objects 24
3.11 The getClassObject function . 25
4.1 Definitions of the Message, Receiver, and MessageExpression data types 30
4.2 Primitive MessageExpression functions 31
4.3 sendMessageExpressionWithNoReply interface 32
4.4 Other sendMessageExpressionWithxreply functions 33
4.5 An ideal interface for sendMessage 34
4.6 Using ad-hoc polymorphism to write setArgument 34
4.7 Using existential types for an argument list 35
4.8 Using sendMessage with a list of existential types 36
4.9 Using Template Haskell versions of printf and sendMessage 36
4.10 sendMessage type signature with an arbitrary parameter 37
4.11 The Arguments type class . 38
4.12 The Arguments type class, redux 39
4.13 The sendMessageExpression implementation using a MessageReply type class 40
4.14 The sendMessage implementation 41
4.15 Using sendMessage . 41
4.16 Hashtable object manipulation in Java 42
4.17 Hashtable object manipulation in Haskell using sendMessage . . . 43
4.18 Convenient hashtable component communication in Haskell . . . 43
4.19 Implementing the put and get functions 44
4.20 The ObjectArgument type class 45
4.21 overloadedMethod in Java . 45
4.22 Implementing overloadedMethod in Haskell 46
4.23 put and get, allowed only to operate on Hashtable and FiniteMap receiving objects 47
4.24 put and get implemented with the DirectMessage type class . . . 48
4.25 Transparent String ↔ StringObject marshalling 49
4.26 Implementation of the # function 50
4.27 Using # and >>= for succinct code 51
4.28 A Haskell component which uses an instance variables object . . 53

LISTINGS 65

5.1 An implementation of sendMessage which marshals exceptions . . 55

Bibliography

[1] Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S., Calling hell from heaven
and heaven from hell (1999), International Conference on Functional Program-
ming, 1999

[2] Finne, S., and Meijer, E., Lambada, Haskell as a Better Java (2000), Haskell
Workshop 2000

[3] Peyton Jones, S., Meijer, E., and Leijen, D., Scripting COM components from
Haskell (1998), Proceedings of ICSR5

[4] Shields, M., and Peyton Jones, S., Object-Oriented Style Overloading for Haskell
(2001), Workshop on Multi-Language Infrastructure and Interoperability (BA-
BEL’01)

[5] Chakravarty, M. M. T., C→Haskell, or Yet Another Interfacing Tool (1999),
Implementation of Functional Languages, 11th. International Workshop (IFL’99)

[6] Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S., H/Direct: A Binary For-
eign Language Interface for Haskell (1998), International Conference on Func-
tional Programming, 1998

[7] Chakravarty, M. M. T., A GTK+ Binding for Haskell,
http://www.cse.unsw.edu.au/∼chak/haskell/gtk/

[8] Sheard, T., and Peyton Jones, S., Template metaprogramming for Haskell (2002),
Haskell Workshop 2002

[9] Lynagh, I., Template Haskell: A Report From
The Field (2003), (unpublished; available at
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/#reportfromfield)

[10] Peyton Jones, S. (editor), et al., Haskell 98 Language and Libraries: The Revised
Report, http://www.haskell.org/definition/

[11] Hughes, J., Global Variables in Haskell, (unpublished; available at
http://www.math.chalmers.se/∼rjmh/)

[12] Chakravarty, M. M. T. (editor), et al., Haskell 98 Foreign Function Interface 1.0:
An Addendum to the Haskell 98 Report http://www.haskell.org/definition/

[13] (members of the haskell-cafe@haskell.org mailing list) Global variables?,
http://haskell.org/pipermail/haskell-cafe/2003-January/003884.html

[14] Peyton Jones, S., and Morrisett, G., A proposal for records in Haskell
http://research.microsoft.com/∼simonpj/Haskell/records.html

