
MAC OS X. LINGUISTICS
… etymologic tales in the arts of programming languages &

operating system innovation

1

This is a talk I gave at Galois Inc on the 20th of June, 2008.

It’s about Mac OS X development, with a special focus on programming language features,
targeted at a particular audience: functional programmers and those familiar with Haskell. I
picked topics I did because I think they’d be interesting for people with a strong
programming language background, but who don’t normally touch the Mac OS X application
development world.

Objective-C

2

Objective-C is the lingua franca of Mac OS X: if you develop a Mac (or iPhone) application,
you’re almost certainly going to be using Objective-C somewhere, and you’re expected to
know it. C and C++ are absolutely supported, but Apple’s engineering efforts are
concentrated on Objective-C for their main frameworks, so much of the Mac’s rich
functionality is only available from Objective-C.

Objective-C

3

Unlike C++, Objective-C is a strict superset of C. Every C program is guaranteed to compile
in Objective-C. You can also use C99 as the underlying C dialect for Objective-C, in which
case C99’s slightly different features and semantics will apply to Objective-C too.

strcpy(to, from, count)
char *to, *from;
int count;
{
 int n = (count + 7) / 8;
 switch (count % 8) {
 case 0: do { *to = *from++;
 case 7: *to = *from++;
 case 6: *to = *from++;
 case 5: *to = *from++;
 case 4: *to = *from++;
 case 3: *to = *from++;
 case 2: *to = *from++;
 case 1: *to = *from++;
 } while (--n > 0);
 }
}

4

Since Objective-C is a strict superset of C, you can just write plain ol’ C and expect it to work
fine. All the goodness that you love about C can be intermixed with Objective-C code just
fine. This slide shows the famous “Duff’s Device” loop unrolling technique that old-skool
programmers use and love. (These days, you’d probably be using your CPU’s vector
instructions to do the loop instead…)

void *sad_panda;

5

And since Objective-C is C, you also inherit all of C’s bad characteristics too. (Keep in mind
that this talk was intended to have a Haskell audience, where unsafe types—such as a void*—
are a big taboo!) The C basis for Objective-C is both a great blessing and curse, though it’s
usually more of a blessing unless you abuse it.

Objective-C

6

So, what’s the object system like for Objective-C?

(gdb) p NSApp
$2 = (struct objc_object *) 0x8039170

(gdb) p *NSApp
$3 = {
 isa = 0x15f8e0
}

(gdb) p NSApp->isa
$4 = (struct objc_class *) 0x15f8e0

(gdb) p *NSApp->isa
$5 = {
 isa = 0x160de0,
 super_class = 0x22d3ea0,
 name = 0x1322de "RWApplication",
 version = 0,
 info = 12206145,
 instance_size = 100,
 ivars = 0x169720,
 methodLists = 0x80391e0,
 cache = 0x809d710,
 protocols = 0x15b064
}

7

This is a short description of what an Objective-C object is. Every object is a pointer, and is
thus heap-allocated unless you are trying to be evil. An Objective-C object is simply a struct
where the very first field—named ‘isa’ (as in “a car ‘is a’ vehicle”)—is a pointer to an objc_class
struct. That’s it. This makes language bridging reasonably easy, and provides an incredibly
simple and easy-to-understand object system.

In this slide, NSApp is the global variable that represents the current running application.
Here, we print out the internal structure of NSApp and find out that its ‘isa’ pointer points to
an Objective-C class named RWApplication; in other words, NSApp is an instance of the
RWApplication class. The objc_class struct has all the information necessary for the object
system to work, such as a pointer to the methods that the class implements, the object’s size,
the name of the class, and a pointer to its superclass (“base class” in C++ lingo).

[string replaceCharactersInRange:NSMakeRange(0,13)
 withString:@”Hello”];

objc_msgSend(string,
 sel_getName(“replaceCharactersInRange:withString:”),
 NSMakeRange(0,13),
 @”Hello”);

8

The text at the top of the slide is what you’d write in Objective-C to call a method. Here, we
assume that there’s a variable named ‘string’, and you’re calling the method on it named
‘replaceCharactersInRange:withString’, with two parameters. (The @”Foo” syntax is short-
hand for creating a compile-time NSString literal, and mirrors the normal “Foo” syntax that
creates a compile-time const char* literal.) In Objective-C jargon, calling a method is
referred to as “sending a message” (derived from Objective-C’s Smalltalk ancestry).

The compiler effectively translates every single method call into a call to the objc_msgSend()
function. objc_msgSend() is a variable-argument function that requires at least two
arguments: the object (i.e. pointer) that you want to send a message to, and a method name.
A method name in Objective-C lingo is also called a “selector”, which is why the
sel_getName() function is prefixed with ‘sel’: sel_getName() is simply a function that takes a C
string and returns a selector.

After the first two arguments, any extra parameters passed to objc_msgSend() are method
parameters.

There’s one important thing to note here: the name of the method we are calling is
“replaceCharactersInRange:withString:”. You may be led to believe that the method name is
“replaceCharactersInRange” with a named parameter called “withString”: this is incorrect.
Objective-C has no named parameters, and for the language geeks, it does not have
overloading of methods. The method name “replaceCharactersInRange:withString:” is a
completely different method name to “replaceCharactersInRange:”, and as far as the language
and compiler are concerned, there is no relation between the two. The number of colons in
the method name exactly determine the number of parameters passed to the method, and
the parameters are interspersed with the method name in the message-sending syntax. This
means that a method named “replaceCharactersInRange:” (with a colon) is also a completely
different to a method named “replaceCharactersInRange” (without a colon): the former has
one argument, the latter has no arguments.

Readability++
BitmapImageRep bitmap = new BitmapImageRep(
 &buffer, bufferSize.width, bufferSize.height, 8, 4, true,
 false, RGBColorSpace, bufferSize.width*4, 32);

NSBitmapImageRep* bitmap = [[NSBitmapImageRep alloc]
 initWithBitmapDataPlanes:&buffer
 pixelsWide:bufferSize.width
 pixelsHigh:bufferSize.height
 bitsPerSample:8
 samplesPerPixel:4
 hasAlpha:YES
 isPlanar:NO
 colorSpaceName:NSCalibratedRGBColorSpace
 bytesPerRow:bufferSize.width*4
 bitsPerPixel:32];

vs

9

One excellent consequence of the Objective-C messaging syntax is that it makes for
incredibly readable code. The top line of this slide is what you might see with a more
traditional C-style positional parameter syntax, as you’d have in C, C++, Java, and almost all
other languages. The latter is what the code looks like in Objective-C. The Objective-C code
is certainly more verbose, but it is immensely more readable! In practice, the messaging
syntax is a _huge_ practical advantage of Objective-C vs other languages.

(Trivia: that method name is also the longest method name that I know of in the Cocoa
framework, which is the main application development framework that Apple uses on Mac OS
X.)

Static Checking,
Dynamic Runtime

[string replaceCharactersInRange:NSMakeRange(0,13)
 withString:@”Hello”];

id string = …;
NSString* string = …;
NSWindow* string = …; // warning, not error

10

Objective-C’s type system is an interesting hybrid of static typing and dynamic typing. The
object system and runtime is extremely flexible and dynamic: you can replace a class’s
method with another method (“method swizzling” in Objective-C speak), and even change the
‘isa’ pointer of an object to point to a completely different class at runtime. (An Objective-C
object is just a simple C struct, after all.) It’s up to you to make sure you don’t break
anything at runtime!

However, while the language itself is dynamic, you normally get the benefits of static type
checking when you write code. Every Objective-C class has a same-named type name, with
the ‘id’ type representing any object, similar to the root Object class in Java. (Unless you are
doing serious hackery, every Objective-C object normally has a generic object class named
NSObject as its last super class.) Here, if we declare our ‘string’ variable to be of type
NSString, the compiler knows all the methods defined on the NSString class and can verify
that the method we’re invoking on the string object exists in the class. If we declare the
‘string’ variable as id (i.e. any possible object), the compiler verifies that
‘replaceCharactersInRange:withString:’ is a method name that belongs to _some_ known
class, so we still correctly get warnings if we mis-spell the method name.

However, if we declare the string variable as an NSWindow*, the compiler will correctly warn
us that the NSWindow class does not have a method named
‘replaceCharactersInRange:withString:’. This is only a warning instead of an error, since it’s
possible that we can add that method at runtime. (We can get rid of the warning through
another Objective-C feature named categories, which will be talked about later.)

64-Bit Runtime:
Non-Fragile Instance Variables

@interface PetStore
: NSObject
{
 NSArray* puppies;

}

@end

(a.k.a. the Fragile Base Class Problem)

11

Objective-C on Mac OS X has two runtimes available so far: the 32-bit (“traditional” or
“NeXT”) runtime and the 64-bit (“modern”) runtime. Most applications on Mac OS X use the
NeXT 32-bit runtime. (Note that there’s also a GNU runtime of Objective-C available, which
we won’t talk about here.)

One of the interesting features of the 64-bit runtime is that it supports what’s called “non-
fragile instance variables”. If you’ve heard about the “fragile base class” problem in C++
(Google for it), the 64-bit runtime solves that problem.

64-Bit Runtime:
Non-Fragile Instance Variables

@interface PetStore
: NSObject
{
 NSArray* puppies;

}

@end

@interface AnimeStore
: PetStore
{
 NSArray* tshirts;

}

@end

12

Let’s say that you have a class named PetStore, with a single instance variable (“ivar” in
Objective-C speak) named puppies. You have a subclass of PetStore named AnimeStore, that
contains another ivar named tshirts.

The memory layout of the AnimeStore class will look like a C struct that has its first field set
to its isa pointer (pointer to its class), followed by the puppies ivar, followed by its tshirts ivar:
so, isa, puppies, tshirts. It’s all fine so far, so let’s assume that we release a library that has
these two classes. Uh oh, what happens if...

64-Bit Runtime:
Non-Fragile Instance Variables

@interface PetStore
: NSObject
{
 NSArray* puppies;
 NSArray* kittens;
}

@end

@interface AnimeStore
: PetStore
{
 NSArray* tshirts;

}

@end

13

The PetStore class now adds a kittens ivar. Recall that in the previous slide, the AnimeStore
class’s memory layout was: isa, puppies, tshirts, and that we released a library that has the
AnimeStore class. However, now that we’ve added a kittens ivar to PetStore, we’ve lost binary
compatibility with older versions of our library, because now the memory layout of the
AnimeStore class looks like: isa, puppies, kittens, tshirts. In other words, any code compiled
with this new PetStore class definition will think that tshirts is the 4th field, but old code that
uses the previous PetStore class definition will think its the 3rd field! Soon it’ll be time to
puzzle over why you’re getting very very weird crashes.

64-Bit Runtime:
Non-Fragile Instance Variables

@interface PetStore
: NSObject
{
 NSArray* puppies;
 NSArray* kittens;
}

@end

@interface AnimeStore
: PetStore
{
 NSArray* tshirts;
 NSArray* mecha;
}

@end

14

The situation gets even worse when we add a new ‘mecha’ ivar to AnimeStore…

64-Bit Runtime:
Non-Fragile Instance Variables

@interface PetStore
: NSObject
{
 NSArray* puppies;
 NSArray* kittens;
}

@end

@interface AnimeStore
: PetStore
{
 NSArray* tshirts;
 NSArray* mecha;
}

@end

15

Now the memory layouts of the two classes will be completely incompatible. The first version
of AnimeStore had a layout of isa, puppies, tshirts. This version of AnimeStore has a memory
layout of isa, puppies, kittens, tshirts, and mecha: puppies is now the only ivar that we can
safely directly address. The mecha have killed the kittens, sniff.

The 64-bit runtime takes care of this “fragile base class” problem with a simple solution: it
computes an offset for each ivar when your program is first launched. The offset is cached,
so that subsequent accesses to the ivar are fast. The trade-off is very slightly reduced
performance for completely ABI (application binary interface) compatibility, which is arguably
a pretty good trade-off to make.

HIGHER-ORDER
PROGRAMMING

16

So now that you know everything there is to know about Objective-C, let’s talk about higher-
order programming (i.e. higher-order functions) in Objective-C. If you’re not a functional
programmer, you may be a bit lost here…

@implementation NSArray (Mapping)

// Usage:
// NSArray* result = [myArray map:@selector(uppercaseString:)];

- (NSArray*)map:(SEL)selector
{
 NSMutableArray* mappedArray = [NSMutableArray array];

 for(id object in self)
 {
 id mappedObject = [object performSelector:selector];
 [mappedArray addObject:mappedObject];
 }

 return mappedArray;
}

@end

17

This is an example of how you’d implement the map method for an Objective-C array, found
in many programming languages with functional programming support (such as Haskell, or
even Python). I won’t explain the code too much here, except to say that this Objective-C
‘map:’ implementation takes in a single argument that’s a selector. (Recall that selector is
just Objective-C lingo for a method name.)

There’s two interesting bits about this slide. The first highlighted bit—“(Mapping)”—is syntax
for declaring an Objective-C “category”, which is basically a way of adding methods to an
existing class. Here, we define our category named “Mapping” (though the name is more-or-
less unimportant) with a method named ‘map:’. Now, you can invoke the map: method on
every single NSArray object. We’ve added a new method to an existing class. Cool, huh?

The other interesting bit is the “NSMutableArray” class. Cocoa, the main Objective-C
framework, typically has immutable and mutable versions of many central data classes (e.g.
arrays, dictionaries, sets, strings). So, there’s an NSArray class, which is immutable, and an
MSMutableArray class, which is mutable. The interesting design decision is that the mutable
versions are typically subclasses of the immutable versions. So, NSMutableArray is a subclass
of NSArray. This means that a “functional” style of programming, where one typically passes
around immutable data, can be cheap: only copies of mutable objects require a full copy of
the object’s data, whereas copies of immutable copies can simply return the same object. In
practice, this design works quite well, because the compiler will warn you if you try to mutate
an immutable object (because they have different types). It also bodes well for designing
applications to be multi-core, since immutable objects require no locking, and are thus
immune to many concurrency nightmares.

map creates a proxy object

proxy object receives the
uppercaseString message

proxy object sends
uppercaseString to each
object in the original array
and collects the results

proxy object returns new
array with uppercased strings

NSArray* result = [myArray map:@selector(uppercaseString:)]

vs

NSArray* result = [[myArray map] uppercaseString];

Higher-Order Messaging

18

The syntax for the ‘map:’ method looks rather long-winded and unwieldy. Instead of writing
[myArray map:@selector(uppercaseString:)], what if we could write the shorter ‘[[myArray
map] uppercaseString]’?

Marcel Weiher and an enterprising group of Objective-C developers at the cocoadev.com
website calls this technique “Higher-Order Messaging”. Details about how it works are on the
slide; hopefully it’s clear enough without further explanation.

Higher-Order Messaging
Threading:
[[earth inBackground] computeAnswerToUniverse]
[[window inMainThread] display]

Futures:
[myArray inPlaceMergeSort]; // synchronous
[[myArray future] inPlaceMergeSort]; // asynchronous

Parallel Map:
[[myArray parallelMap] uppercaseString]

Control Flow:
[[myArray logAndIgnoreExceptions] stupidMethod]

19

There are many uses for higher-order messaging outside of the usual functional-
programming-style map/fold/filter collection functions. Some examples are shown here.

Higher Order Messaging

Marcel Weiher
British Broadcasting Corporation

metaobject Ltd.
marcel@metaobject.com

Stéphane Ducasse
Language and Software Evolution Group
LISTIC — Université de Savoie, France
stephane.ducasse@univ-savoie.fr

Revision: 1.38 – Date: 2005/07/03 20:41:01

ABSTRACT
We introduce Higher Order Messaging, a higher order program-
ming mechanism for dynamic object-oriented languages. Higher
Order Messages allow user-defined message dispatch mechanism
to be expressed using an optimally compact syntax that is a natu-
ral extension of plain messaging and also have a simple conceptual
model. They can be implemented without extending the base lan-
guage and operate through language bridges.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Constructs and Features—
Classes and objects, Control structures, Patterns

General Terms
messages, methods, higher order messaging

1. INTRODUCTION
The initial impulse for creating Higher Order Messaging (HOM)
was a desire to escape the loop ”pattern” [18], the processing of
collections through repetitive use of iterative idioms in Objective-C
and similar languages. The mechanism presented not only solves
the original problem in the context of Objective-C it also works
well in other applications and also defines a purer higher order pro-
gramming mechanism for languages such as Smalltalk that already
have some sort of high-order function facility.

The contributions of this article are the analysis of the current state
of the art of iteration specification in object-oriented languages,
the presentation of Higher Order Messaging and the illustrations
in Objective-C.

The paper is structured as follow: we start by showing that loops
are not well integrated in the object-oriented paradigm, then we
present the concept of high-order messaging and its applications in
various domains. Finally we discuss the implementation of higher

order messages in Objective-C and compare our work in the context
of existing languages.

2. COLLECTION ITERATION PROBLEMS
In this section we illustrate the heart of the problem: the lack of
a clean and uniform integration of control structures such as loops
into object-oriented programming. Whereas object-oriented pro-
gramming defines operations as messages sent to objects, control
structures need additional ad-hoc mechanisms in most of the lan-
guages. These additional mechanisms complicate the solution to
the problem at hand and add unnecessary constraints as we present
now.

2.1 Objective-C
As higher order messages have first been implemented by the first
author in Objective-C, we briefly recap the most important syntac-
tical points of Objective-C. Note however that higher order mes-
sages are not specific to Objective-C and can be introduced to any
dynamically-typed object-oriented languages such as Smalltalk or
Ruby.

Objective-C is a hybrid object-oriented programming language based
on C that adds dynamic message passing from Smalltalk to its
C substrate [4]. The syntax is a strict superset of C that adds
a message send operation, delimited by square brackets and us-
ing Smalltalk keyword syntax i.e., arguments are placed inside the
method name preceeded by a colon “:”.

[employee salary]
[employee setSalary:10000];
[employee setFirstName:@”Sally”];
[[employee manager] salary];

String object literals are prefixed with the @ character, for exam-
ple @”I am a string” is the string ’I am a string’. There is ad-
ditional syntax for class-definition and declaration that we will not
use here. The @selector() construct is used to specify the name
of a message that can be used to send programatically a message.
For example, the following two expressions both send the message
addObject: to the salariedEmployees object, the first directly,
the second using reflective facilities:

[salariedEmployees addObject:anEmployee];
[salariedEmployees

performSelector:@selector(addObject:)
withObject:anEmploye];

1

OOPSLA 2005

20

For more information on Higher-Order Messaging, simply Google for it: you can find the
paper that Marcel Weiher and Stéphane Ducasse submitted to OOPSLA 2005 about it. It
explains the subtle differences between HOM and more traditional higher-order functions
better than I can.

GARBAGE
COLLECTION

21

Objective-C has traditionally been a memory-managed language, using reference counting to
manage an object’s life cycle. Objective-C 2.0, which debuted with Mac OS X 10.5 (“Leopard”)
adds one very major disruptive feature: garbage collection. Its implementation is sufficiently
interesting to talk about in-depth here.

Garbage Collection is Opt-In

22

Garbage collection is _optional_ with Objective-C 2.0. To enable it, you need to pass the -
fobjc-gc option to gcc. If you don’t use that compiler flag, garbage collection is off for the
current compilation unit, and things work as they did since 1988.

@interface Widget : NSObject
{
 Widget* nextWidget;
}

- (Widget*)nextWidget;
- (void)setNextWidget:(Widget*)aWidget;

@end

23

Here’s a small example class named Widget: it has an accessor for a ‘nextWidget’ property;
the getter is a method named nextWidget, while the setter is a method named
setNextWidget:. This is a standard Cocoa design pattern.

@implementation Widget

- (Widget*)nextWidget
{
 @synchronized(self)
 {
 return [[nextWidget retain] autorelease];
 }
}

- (void)setNextWidget:(Widget*)aWidget
{
 @synchronized(self)
 {
 if (nextWidget != aWidget)
 {
 [nextWidget release];
 nextWidget = [aWidget retain];
 }
 }
}

@end

24

Here’s the code you’d need to write a thread-safe getter and setter in Objective-C. You have
to write this crap for _every_ _single_ stupid getter and setter.

Memory management of objects is performed with three method calls: retain, release, and
autorelease. Every object has a reference count: when you initially allocate an object, its
reference count is 1. Sending a retain message to an object increases its reference count.
Sending a release message to an object decreases its reference count. When its reference
count drops to zero (0), the runtime system deallocates the object and frees its memory.

The autorelease message basically tells the object to decrease its reference count “sometime
later”. At first, this seems weird, but it’s one of Cocoa’s biggest innovations, and it makes
memory management relatively painless when you’re normally writing code. The simple
story is that Cocoa manages something called autorelease pools, which is a bag of objects:
when you send an autorelease message to an object, it gets added to the autorelease pool.
Sometime later, your application will destroy the autorelease pool—usually the NSApplication
class will do this for you automatically during the standard GUI event loop. When the
autorelease pool is destroyed, every object gets sent a release message. This technique
means that almost all methods that return you a new object will return you an autoreleased
one, so that you don’t have to do anything to manage its memory: the object effectively
destroys itself when it’s no longer needed.

@implementation Widget

- (Widget*)nextWidget
{
 @synchronized(self)
 {
 return [[nextWidget retain] autorelease];
 }
}

- (void)setNextWidget:(Widget*)aWidget
{
 @synchronized(self)
 {
 if (nextWidget != aWidget)
 {
 [nextWidget release];
 nextWidget = [aWidget retain];
 }
 }
}

@end

25

With garbage collection enabled, the retain, release and autorelease messages are all
effectively re-written to be no-ops at runtime.

@implementation Widget

- (Widget*)nextWidget
{
 return nextWidget;
}

- (void)setNextWidget:(Widget*)aWidget
{
 nextWidget = aWidget;
}

@end

26

So, with GC turned on, your accessors typically look like this instead.

@implementation Widget

- (void)dealloc
{
 [children release];
 [attributes release];

 parent = nil; // we don’t own our parent

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [super dealloc];
}

@end

27

When an object’s reference count drops to zero (0), its dealloc method is called. This is where
you usually send release messages to objects that you own. Here’s a typical example of a
dealloc method under manual memory management (non-GC).

@implementation Widget

- (void)dealloc
{
 [children release];
 [attributes release];

 parent = nil; // we don’t own our parent

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [super dealloc];
}

@end

28

With GC on, you don’t need to send release messages to objects that you own, since that’s
the entire idea of GC: the garbage collector does that for you.

@implementation Widget

- (void)dealloc
{
 [children release];
 [attributes release];

 parent = nil; // we don’t own our parent

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [super dealloc];
}

@end

29

Objective-C’s garbage collector has interesting support for weak references, which are
intended to be references to objects that you do not own. Here, we don’t own our parent
object; instead, the parent owns this object. So, if we declare the parent variable to be a
weak reference (using a new __weak pointer qualifier), if the object that parent points to ever
gets destroyed, this parent variable will be re-written to be nil. Thus, weak references are
guaranteed to be either NULL or point to a valid object. This feature is calling ‘zeroing weak
references’.

This is a somewhat useless example, because our object’s going to be destroyed anyway, so
setting the parent to nil doesn’t really have any effect. However…

@implementation Widget

- (void)dealloc
{
 [children release];
 [attributes release];

 parent = nil; // we don’t own our parent

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [super dealloc];
}

@end

30

NSNotificationCenter is an often-used means to provide notifications to objects. For
example, you may want a particular method to be invoked on your object if a new file appears
in a particular directory: to do that, you can add yourself to the NSNotificationCenter, which
will notify you when that happens.

In a memory-managed environment, you normally have to de-register yourself with the
notification centre when your object is destroyed, otherwise the notification centre will try to
send a message to a dangling pointer and crash. Under GC, the notification centre uses
zeroing weak references, so you don’t have to de-register yourself: the GC will rewrite all
references to your object in the notification centre to be NULL. In Objective-C, sending a
message to NULL is a perfectly valid thing to do: it simply does nothing, unlike C++ where
things will crash. (This is a feature, not a bug :). So, we don’t need to de-register ourselves
from NSNotificationCenter with GC.

@implementation Widget

- (void)dealloc
{
 [children release];
 [attributes release];

 parent = nil; // we don’t own our parent

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [super dealloc];
}

@end

31

Finally, since there’s nothing else to do in our dealloc, we don’t have to override our
superclass’s dealloc anymore…

@implementation Widget

@end

32

So under GC, we don’t need to write a dealloc method for this particular example at all. Less
code; less complexity; less bugs.

Garbage Collection is Opt-In

“Dual-mode” frameworks
and plugins

Main application decides
whether to use GC

33

One remarkable thing about Objective-C 2.0 garbage collection’s opt-in feature is that you
can incrementally transition parts of your application to GC. To run as GC, every single
Objective-C binary loaded into the process address space must support GC, including all
libraries and plugins. A GC application cannot load a plugin that does not support GC.

However, what you can do is compile libraries and plugins as GC-supported—which work
under both GC and non-GC environments—and then switch over your application to use GC
when it’s ready. This means that these “dual-mode” plugins and libraries can work with GC
and non-GC applications. You can even compile your main application as GC-supported
instead of GC-required, and then set an environment variable at runtime to decide whether
you want to run with GC on or off. This makes testing and profiling both versions extremely
easy.

Objective-C 2.0 is the first example I know of where a widely-deployed language has
managed to add garbage collection support, and have existing applications transition to it.
(The GNU Objective-C runtime is close, but not quite the same—email me if you want the
gory details.)

Mark and Sweep

Incremental

Generational

Concurrent

Zeroing weak pointers

Opt-In/Opt-Out

First system I know that
retrofits an existing, heavily
deployed language to use GC

Can incrementally transition
code to be GC-clean: use GC
to clean up memory bugs!

RapidWeaver: 1.3GB
working space & 700MB
resident, vs 200MB working
space and 95MB resident

Garbage Collection Features

34

Here’s the buzzword summary about Objective-C GC. Note that the GC is a generational
collector, and concurrent (collection is done on a background thread); Apple advertise it as a
free way to make use of those extra CPU cores :).

We’re slowly transitioning RapidWeaver to use GC, and it’s working out great so far. I’m fairly
sure that the next major release of RapidWeaver will be using GC; it’s time to march into the
1970s!

Blocks

35

[myArray map:^(NSString* string) { return [string uppercaseString] }];

[myArray map:λ(NSString* string) { return [string uppercaseString] }];

36

Blocks have this weird ^ syntax. But replace the ^ with λ and everything becomes clear: a
block is simply a lambda expression, a.k.a. closure, a.k.a. anonymous function, a.k.a. inner
class without all the stupidity. You can use it to define in-line functions.

NSArray *strings = [NSArray arrayWithObjects:
 @"string 1", @"String 21", @"string 12", @"String 11",
 @"String 02", nil];

int numberOfComparisons = 0;

NSComparator finderSort = ^(id string1, id string2)
{
 static int comparisonOptions = NSCaseInsensitiveSearch
 | NSNumericSearch | NSWidthInsensitiveSearch
 | NSForcedOrderingSearch;

 NSRange string1Range = NSMakeRange(0, [string1 length]);

 return [string1 compare:string2
 options:comparisonOptions
 range:string1Range
 locale:[NSLocale currentLocale]];
};

NSArray* sortedArray = [strings sortedArrayUsingComparator:finderSort]);

37

Here’s a quick example of using Blocks. Here, -sortedArrayUsingComparator: takes in a
block argument, which is the finderSort variable. Note that finderSort is a block, not a
function!

Blocks Support

C, C++, Objective-C, Objective-C++

Objective-C frameworks will natively support blocks

Unclear how many BSD-level APIs support blocks

38

Blocks are being implemented all the way down at the C layer, and will be usable in C,
Objective-C, C++ and Objective-C++. Apple are pushing to have Blocks become an official
ISO C language extension; personally I think they’ve got buckley’s chance in hell because the
very idea of C with closures will probably nauseate some, but I truly hope they get it. It may
be the first decent extension to the C language since, well, pretty much forever.

DEVELOPMENT TOOLS
FUTURE DIRECTIONS

39

LLVM

llvm-gcc 4.2.0 in iPhone
SDK: LLVM compiler
backend with GCC frontend

~30% faster compile time

Where’s my GHC-LLVM?

-O2 -O3 -O4

gcc 56.4 59.6

llvm-
gcc 60.3 65 66.8

Apple’s H.264 encoder:
frames per second

40

A new compiler, named llvm-gcc, is being shipped with the iPhone SDK. llvm-gcc is the gcc
front-end merged with the compiler backend from the LLVM compiler project. (I assume you
know what a compiler back-end/front-end is; if you don’t, Google. Ditto for LLVM.) llvm-gcc
enables a new -O4 optimisation level that enables “link-time optimisation”, which is basically
interprocedural code analysis (IPA). This means that functions can be inlined across different
compilation units, and it can enable significant performance improvements.

Here, Apple’s own H.264 encoder showed a 17% performance increase with llvm-gcc -O4 vs
using gcc -O2. This is a remarkable result considering all you have to do is twiddle a single
compiler flag! llvm-gcc also typically compiles about 30% faster than GCC 4.2 because the
LLVM backend code generator is simply a lot more efficient.

llvm-gcc is also ABI-compatible with gcc, so you can mix’n’match compilation units with gcc
or llvm-gcc as you please. This important for backward compatibility, and for incrementally
adopting LLVM.

Clang

New C/C++/Objective-C/Objective-C++ frontend

Fast!

LLVM + Clang should be ~2-2.5x as gcc 4.2

41

llvm-gcc still uses the GCC front-end. The LLVM project is working on a new front-end
named “Clang” that’s designed to be bug-for-bug compatible with the current GCC front-end
parser, so that a future compiler doesn’t have to re-use any GCC parts at all. (And these
guys really do mean bug-for-bug compatible: I’m pretty sure that the eventual goal will be to
recompile all of Mac OS X from scratch with llvm-gcc instead of gcc, which includes the
kernels, and hundreds of megabytes of frameworks!)

Clang + LLVM

Enables LLVM to be linked in as a compiler framework

IDE keeps entire parse tree in memory: 100% accurate parsing,
refactoring

Enables incremental compilation and static checking as you
type!

No more file-level granularity compilation

No more forking of external processes to compile

42

Since LLVM and Clang are designed to be libraries, they can be re-used in applications to
provide the exact same compiler capabilities as the compiler command-line tools. This bears
enormous potential for integrated development environments (IDEs), such as Apple’s own
Xcode.

This slide is pure speculation, but it’s not hard to foresee the massive improvements that this
design brings to IDEs: IDEs can effectively provide instant turnaround time for compiled
languages, since they can incrementally compile and link your program rather than relying on
the more traditional compile-each-file strategy. Even if LLVM isn’t the fastest compiler on the
planet, if an IDE can incrementally compile a project, your workflow can potentially be sped
up enormously.

GRAND CENTRAL DISPATCH
… or, the evolution of the humble event loop

43

Grand Central Dispatch, or GCD, will debut with Mac OS X 10.6 (code-named Snow Leopard).

libdispatch (i.e. UNIX level)

Event Loop (a.k.a. Run
Loop): timers, file
descriptors, signals…

Work queue of blocks,
dispatched across all cores

Understands system load

GCD in a Nutshell

44

In a nutshell: GCD is the traditional event loop/run loop used for GUIs, which also handles
dispatching of operations (“work units”) to CPU & GPU cores. It unifies all asynchronous
callbacks, such as UNIX signals, select(2) calls, timers, and event processing into a single run
loop, and also schedules work to be done on compute cores, backing off if system load is
currently high. It’s Apple’s play at solving the multicore computing problem: write your stuff
in work units—blocks!—and let GCD schedule them all in parallel for you.

OPEN COMPUTING LANGUAGE
a.k.a. OpenCL

45

OpenCL is ratified for official release at the time of this writing.

OpenCL in a Nutshell

C99 + restrict + memory
address qualifiers + barriers +
native vector type

Like NVIDIA’s CUDA or
AMD’s CTM

Load-balances CPUs and
GPUs via GCD & Blocks

Uses LLVM (JIT) + Clang

46

For more information, see <http://en.wikipedia.org/wiki/OpenCL> or <http://
en.wikipedia.org/wiki/OpenCL>.

0

75

150

225

300

 C99 OpenCL: CPU OpenCL: GPU OpenCL: CPU + GPU

240
205

66

2

N-Body Problem Simulation

G
Fl

op
s

47

Here’s some benchmarks from an Apple test implementation of the N-body gravitational
simulation problem. OpenCL works with Grand Central Dispatch to schedule work across
multiple cores, which is why there’s such a dramatic speedup between the C99 and OpenCL
versions. OpenCL’s native vector types enable computations to be done on sets of data in
parallel, with the compiler taking care of the parallelism for you.

THANK YOU!

48

Keep in mind that many of the technologies discussed in this talk will apply to iPhone
development too, which means that we finally have a mobile phone development platform
that may actually be fun to work with!

If you have any questions about this talk, feel free to email me at ozone@algorithm.com.au.

