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What are Monads?

Folklore has it that,
• Monads are scary!
• Monads are only needed to handle I/O, or other side

effects, in lazy languages.

This is utter bolloc. . . nonsense!
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Let’s Try Again: What are Monads?

Monads are a programming pattern for library APIs:

• Another such pattern is, e.g., model-view-controller (MVC).
• All we need to know is,

I in what situations is the monad pattern useful and
I how does it look like?

What kind of libraries benefit from monads?

• Answer: Libraries that manipulate contextual information.
• Contextual information is implicit and the monad hides it.
• Examples:

I Stateful libraries (mutuable arrays, I/O, . . . )
I Exception handling
I Libraries using CPS (e.g., schedulers)
I Libraries encapsulating search
I Parser combinators
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Monad 101

A monad you all know and love(?)

int compare_chars ()
{

int a, b;

a = getchar ();
b = getchar ();
return (a < b);

}

• “IO t”: monad encapsulating the state of the world:
I perform operations depending on external or internal state
I perform operations changing external or internal state
I when done, return a value of type t
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Hello World with Gtk2Hs
import Graphics.UI.Gtk
main :: IO ()
main =

do {
initGUI;
window <- windowNew;
button <- buttonNew;
set window [ containerBorderWidth := 10,

containerChild := button ];
set button [ buttonLabel := "Hello World" ];
onClicked button (putStrLn "Hello World");
onDestroy window mainQuit;
widgetShowAll window;
mainGUI;

}

• onClicked :: Button -> IO () -> IO ()

• If you can write C programs, you can write programs in the
IO monad
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Value Added

So, programming in the IO monad is like programming in C.
Why bother?!?

Advantage 1: Control side effects
• Different signatures, different properties:
noSideEffects :: Int -> Int
maybeSideEffects :: Int -> IO Int

• Checked by the compiler, simplifies debugging
• Encapsulated internal state
• Required for concurrency!
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Value Added

So, programming in the IO monad is like programming in C.
Why bother?!?

Advantage 1: Control side effects
• Different signatures, different properties:
noSideEffects :: Int -> Int
maybeSideEffects :: Int -> IO Int

• Checked by the compiler, simplifies debugging
• Encapsulated internal state
• Required for concurrency!

compare_chars_bad =
do {

return (getChar < getChar); – Type error!
} – Can’t compare (IO Char)
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Advantage 2: Monads are first-class

• Define your own monad! Here it gets slightly scary. . .
class Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad MyIO where ...
• The do notation is just syntactic sugar:

• Redefine IO to simplify debugging!
• foldl (>>) (return ()) Have fun!

where m >> n = do {_ <- m; n}
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Encapsulated state

External state versus internal state
• External state: external to the application (hard disks,

networks, . . . ); can only be manupilated by side effects
• Internal state: part of application data structure;

manipulation by side effect or state threading

Encapsulated state
• State with limited life time
• Example: marker array for graph traversal

I Pure structure: threaded set of visited nodes
I Mutable array: update by side effect

• Algorithmic choice should not affect graph interface (e.g.,
depth first traversal skeleton)

• State transformer monad
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data ST s a
instance Monad ST
data STRef s a

readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST () a
runST :: (forall s. ST s a) -> a
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Different Categories of Monads

Monads classified:
• State transformer monad
• Reader monad & writer monad
• Exception monad
• CPS monad
• Indeterminism monad
• Time-runs-backwards monad
• List monad
• Strictness monad
• Identity monad
• . . .

• There are also monad transformers
• Parser monad — Hello André!
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