Monads are Not Scary!

Manuel M. T. Chakravarty [Part 1]
André Pang [Part I1]

University of New South Wales

Manuel M. T. Chakravarty Monads are Not Scary!

- Whatare Monads?

Folklore has it that,
e Monads are scary!

e Monads are only needed to handle I/O, or other side
effects, in lazy languages.

Manuel M. T. Chakravarty Monads are Not Scary!

- What are Monads?

Folklore has it that,
e Monads are scary!

e Monads are only needed to handle I/O, or other side
effects, in lazy languages.

This is utter betee. .. nonsense!)

Manuel M. T. Chakravarty Monads are Not Scary!

Monads are a programming pattern for library APIs:

Manuel M hakravarty Monads are Not Scary!

Monads are a programming pattern for library APIs:

e Another such pattern is, e.g., model-view-controller (MVC).
¢ All we need to know is,

» in what situations is the monad pattern useful and
» how does it look like?

Manuel M. T. Chakravarty Monads are Not Scary!

Let's Try

Monads are a programming pattern for library APIs:

e Another such pattern is, e.g., model-view-controller (MVC).
¢ All we need to know is,

» in what situations is the monad pattern useful and
» how does it look like?

What kind of libraries benefit from monads?

Manuel M. T. Chakravarty Monads are Not Scary!

Let's Try Again: What are Monads? ..

Monads are a programming pattern for library APIs:

e Another such pattern is, e.g., model-view-controller (MVC).
¢ All we need to know is,

» in what situations is the monad pattern useful and
» how does it look like?

What kind of libraries benefit from monads?
e Answer: Libraries that manipulate contextual information.

e Contextual information is implicit and the monad hides it.
e Examples:

Stateful libraries (mutuable arrays, 1/0O, .. .)

Exception handling

Libraries using CPS (e.g., schedulers)

Libraries encapsulating search

Parser combinators ’

vy vy VY VvYY

Manuel M. T. Chakravarty Monads are Not Scary!

A monad you all know and love(?)

int compare_chars ()

{

int a, b;

a = getchar ();
b = getchar ();
return (a < b);

Manuel M. T. Chakravarty Monads are Not Scary!

A monad you all know and love(?)

compare_chars =
do {

a <- getChar;
b <- getChar;
return (a < b);

b

Manuel M. T. Chakravarty Monads are Not Scary!

A monad you all know and love(?)
compare_chars :: I0 Bool

compare_chars =
do {

a <- getChar;
b <- getChar;
return (a < b);

b

e “I0 t”: monad encapsulating the state of the world:

» perform operations depending on external or internal state
» perform operations changing external or internal state
» when done, return a value of type t

Manuel M. T. Chakravarty Monads are Not Scary!

A monad you all know and love(?)
compare_chars :: I0 Bool

compare_chars =
do {

a <- getChar; — getChar :: 10 Char
b <- getChar;

return (a < b);

b

e “I0 t”: monad encapsulating the state of the world:

» perform operations depending on external or internal state
» perform operations changing external or internal state
» when done, return a value of type t

Manuel M. T. Chakravarty Monads are Not Scary!

A monad you all know and love(?)
compare_chars :: I0 Bool

compare_chars =
do {

a <- getChar; —getChar :: 10 Char
b <- getChar;

return (a < b);

}

e “I0 t”: monad encapsulating the state of the world:

» perform operations depending on external or internal state
» perform operations changing external or internal state
» when done, return a value of type t

Manuel M. T. Chakravarty Monads are Not Scary!

Hello World with Gtk2Hs

import Graphics.UI.Gtk
main :: I0 ()
main =
do {
initGUI;
window <- windowNew;
button <- buttonNew;

set window [containerBorderWidth := 10,
containerChild := button];
set button [buttonLabel := "Hello World" 1];

onClicked button (putStrLn "Hello World");
onDestroy window mainQuit;

widgetShowAll window;

mainGUT;

Manuel M hakravarty Monads are Not Scary!

Hello World with Gtk2Hs

import Graphics.UI.Gtk
main :: I0 ()
main =
do {
initGUI;
window <- windowNew;
button <- buttonNew;

set window [containerBorderWidth := 10,
containerChild := button];
set button [buttonLabel := "Hello World" 1];

onClicked button (putStrLn "Hello World");
onDestroy window mainQuit;

widgetShowAll window;

mainGUT;

e onClicked :: Button -> I0 () -> I0 ()

Manuel M hakravarty Monads are Not Scary!

Hello World with Gtk2Hs

import Graphics.UI.Gtk
main :: I0 ()
main =
do {
initGUI;
window <- windowNew;
button <- buttonNew;

set window [containerBorderWidth := 10,
containerChild := button];
set button [buttonLabel := "Hello World" 1];

onClicked button (putStrLn "Hello World");
onDestroy window mainQuit;
widgetShowAll window;

mainGUT;

}

e onClicked :: Button -> I0 () -> I0 ()

e If you can write C programs, you can write programs in the
10 monad

Manuel M hakravarty Monads are Not Scary!

@

Value

So, programming in the I0 monad is like programming in C.
Why bother?!? J

Manuel M. T. Chakravarty Monads are Not Scary!

Value Added

So, programming in the I0 monad is like programming in C.
Why bother?!?

Advantage 1: Control side effects
« Different signatures, different properties:

noSideEffects :: Int -> Int
maybeSideEffects :: Int -> I0 Int

e Checked by the compiler, simplifies debugging
e Encapsulated internal state
e Required for concurrency!

int compare_chars_bad ()

return (getchar () < getchar ());

Manuel M. T. Chakravarty Monads are Not Scary!

Value Added

So, programming in the I0 monad is like programming in C.
Why bother?!?

Advantage 1: Control side effects
« Different signatures, different properties:

noSideEffects :: Int -> Int
maybeSideEffects :: Int -> I0 Int

e Checked by the compiler, simplifies debugging
e Encapsulated internal state
e Required for concurrency!

int compare_chars_bad ()

return (getchar () < getchar ()); // what order?
} // same problem in ML | @@

Manuel M. T. Chakravarty Monads are Not Scary!

Value Added

So, programming in the I0 monad is like programming in C.
Why bother?!?

Advantage 1: Control side effects
« Different signatures, different properties:

noSideEffects :: Int -> Int
maybeSideEffects :: Int -> I0 Int

e Checked by the compiler, simplifies debugging
e Encapsulated internal state
e Required for concurrency!

compare_chars_bad =
do {
return (getChar < getChar); - Type error!
} — Can’t compare (IO Char) | €y

v
Manuel M. T. Chakravarty Monads are Not Scary!

Advantage 2: Monads are first-class

Manuel M. akravarty Monads are Not Scary!

Advantage 2: Monads are first-class

e Define your own monad! Here it gets slightly scary. ..

class Monad m where

return :: a -> m a

(>>=) ::ma->(a->mb) ->mb
instance Monad MyIO where

Manuel M. T. Chakravarty Monads are Not Scary!

Advantage 2: Monads are first-class

e Define your own monad! Here it gets slightly scary. ..

class Monad m where

return :: a -> m a

>>=) ::ma->(a->mb) ->mb
instance Monad MyIO where ...

e The do notation is just syntactic sugar:
do {
¢ <- getChar;
return (c ==’ ?);

b

getChar >>= \c¢ ->
return (c ==’ ?)

Manuel M. T. Chakravarty Monads are Not Scary!

Advantage 2: Monads are first-class
e Define your own monad! Here it gets slightly scary. ..

class Monad m where

return :: a -> m a

>>=) ::ma->(a->mb) ->mb
instance Monad MyIO where ...

e The do notation is just syntactic sugar:

do {
¢ <- getChar;
return (c == 2’ ?);
}
getChar >>= (\¢ -> return (c ==’ ?))

Manuel M. T. Chakravarty Monads are Not Scary!

Advantage 2: Monads are first-class
e Define your own monad! Here it gets slightly scary. ..

class Monad m where

return :: a -> m a

>>=) ::ma->(a->mb) ->mb
instance Monad MyIO where ...

e The do notation is just syntactic sugar:

do {
¢ <- getChar;
return (c ==’ ?);
}
getChar >>= (\¢ -> return (c ==’ ?))

e Redefine 10 to simplify debugging!

Manuel M. T. Chakravarty Monads are Not Scary!

Advantage 2: Monads are first-class
e Define your own monad! Here it gets slightly scary. ..

class Monad m where

return :: a -> m a

>>=) ::ma->(a->mb) ->mb
instance Monad MyIO where ...

e The do notation is just syntactic sugar:

do {
¢ <- getChar;
return (c ==’ ?);
}
getChar >>= (\¢ -> return (c ==’ ?))

e Redefine 10 to simplify debugging!
e foldl (>>) (return ()) Have fun!

where m >> n = do {_ <- m; n}

Manuel M. T. Chakravarty Monads are Not Scary!

External state versus internal state
e External state: external to the application (hard disks,
networks, .. .); can only be manupilated by side effects

e Internal state: part of application data structure;
manipulation by side effect or state threading

Manuel M. T. Chakravarty Monads are Not Scary!

Encapsulated state

External state versus internal state

e External state: external to the application (hard disks,
networks, ...); can only be manupilated by side effects

e Internal state: part of application data structure;
manipulation by side effect or state threading

Encapsulated state

o State with limited life time
e Example: marker array for graph traversal

» Pure structure: threaded set of visited nodes
» Mutable array: update by side effect

Manuel M. T. Chakravarty Monads are Not Scary!

Encapsulated state

External state versus internal state

e External state: external to the application (hard disks,
networks, ...); can only be manupilated by side effects

e Internal state: part of application data structure;
manipulation by side effect or state threading

Encapsulated state

o State with limited life time
e Example: marker array for graph traversal
» Pure structure: threaded set of visited nodes
» Mutable array: update by side effect
¢ Algorithmic choice should not affect graph interface (e.g.,
depth first traversal skeleton)

Manuel M. T. Chakravarty Monads are Not Scary!

Encapsulated state

External state versus internal state

e External state: external to the application (hard disks,
networks, ...); can only be manupilated by side effects

e Internal state: part of application data structure;
manipulation by side effect or state threading

Encapsulated state

o State with limited life time
e Example: marker array for graph traversal

» Pure structure: threaded set of visited nodes
» Mutable array: update by side effect

¢ Algorithmic choice should not affect graph interface (e.g.,
depth first traversal skeleton)

e State transformer monad !

Manuel M. T. Chakravarty Monads are Not Scary!

data ST s a
instance Monad ST
data STRef s a

readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST () a
runST :: (forall s. ST s a) -> a

Manuel M. T. Chakravarty Monads are Not Scary!

Different Categories of Monads

Monads classified:
o State transformer monad
e Reader monad & writer monad
e Exception monad
e CPS monad
e Indeterminism monad

e Time-runs-backwards monad
e List monad

e Strictness monad

e |dentity monad

Manuel M. T. Chakravarty Monads are Not Scary!

Different Categories of Monads

Monads classified:
o State transformer monad
e Reader monad & writer monad
e Exception monad
e CPS monad
e Indeterminism monad

e Time-runs-backwards monad
e List monad

e Strictness monad

e |dentity monad

e There are also monad transformers

Manuel M. T. Chakravarty Monads are Not Scary!

Different Categories of Monads

Monads classified:
o State transformer monad
e Reader monad & writer monad
e Exception monad
e CPS monad
e Indeterminism monad

e Time-runs-backwards monad
e List monad

e Strictness monad

e |dentity monad

e There are also monad transformers
e Parser monad — Hello André! !

Manuel M. T. Chakravarty Monads are Not Scary!

